17 or 19?

Does anyone have a good and short proof for \( 17^{19} > 19^{17} \) without using any help from calculators or log tables?

Note by Muzaffar Ahmed
3 years, 10 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Consider the function \(f(x) = \displaystyle x^{\frac{1}{x}}\). If you test it's derivatives, you'll find it assumes it's maximum at \(x=e\). So \(f\) is larger for that number which is closer to \(e\) as \(f' <0 \) for \(x>e\). Particularly here, \(e< 17 < 19\), so \(17^{\frac{1}{17}} > 19^{\frac{1}{19}} \Rightarrow 17^{19}>19^{17}\). Sorry bro, calculus is the best option for these problems. You may use a non calculus number theoretic approach but that will be long. Explicitly, you need to do some calculation.

Paramjit Singh - 3 years, 10 months ago

Log in to reply

That's what we learnt in our school. For our exams... Nice example

Nishant Sharma - 3 years, 10 months ago

Log in to reply

\[\begin{align} \log 17^{19} &= 19\log 17 \\ &=\left(17\frac{19}{17}\right)\left(\log 19 \frac{\log 17}{\log 19}\right) \\ &= \underbrace{\left(\frac{\frac{\log 17}{17}}{\frac{\log 19}{19}}\right)}_{>1 \text{ because }\frac{\log x}{x}\text{ is strictly decreasing for }x>e }17\log 19 \\ \end{align}\] Therefore \[\begin{align} 19 \log 17 &> 17\log 19 \\ 17^{19} &> 19^{17} \end{align} \]

Josh Silverman Staff - 3 years, 10 months ago

Log in to reply

Yeah I thought about that.. But.. Is there no other way we can prove that without using the rule of \( \frac{log x}{x} \) is decreasing for \( x > e \) ?

Muzaffar Ahmed - 3 years, 10 months ago

Log in to reply

(This doesn't work out ... Yet)

A non calculus, non logarithm, non tedious expansion / calculation approach.

Step 1: Show using the binomial theorem that for \(n\geq 3\), we have \(n^{n+1}>(n+1)^n \). ( Do you see why you need n greater than 3?).

Step 2: compare \(17^{18}> 18^{17}\) and \(18^{19} > 19^{18} \).

Calvin Lin Staff - 3 years, 10 months ago

Log in to reply

Ah, yes, a decent solution.. Thanks Bro @Calvin Lin :)

Muzaffar Ahmed - 3 years, 10 months ago

Log in to reply

Show that for \(n \geq 3\), we have \( n^{ \frac 1 {n+1}} \) is a decreasing sequence and that \( n^{ \frac 1 {n-1}} \) is an increasing sequence. The usual approach would be calculus, but you can also use the binomial theorem.

Hence, we have \(17^{19}>18^{18}>19^{17}\)

Calvin Lin Staff - 3 years, 10 months ago

Log in to reply

17^{17+2} or (17+2)^{17} Which is greater...?

Siva Prasad - 3 years, 10 months ago

Log in to reply

Absolutly cz 17 is smaller than 19

Ali Shkeir - 3 years, 10 months ago

Log in to reply

No

Parth Zain - 3 years, 10 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...