Given the equation \(x^5+5(2x^3+x+2)=5x^2(x^2+2)\) has a real root in the form of \(a-\sqrt[5]{b}\) where \(a\) and \(b\) are real positive integers. Find \((a,b)\)

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

## Comments

Sort by:

TopNewest\[x^5+5(2x^3+x+2)=5x^2(x^2+2)\\ x^5+10x^3+5x+10 = 5x^4+10x^2 \\ x^5 -5x^4+10x^3-10x^2+5x+10 = 0 \\ x^5 -5x^4+10x^3-10x^2+5x-1+1 +10 = 0 \\ (x-1)^5 = -11 \\ x-1 = - \sqrt [5] {11} \\ x = 1 - \sqrt [5] {11} \\ \Rightarrow \boxed{a = 1 \quad b = 11} \] – Chew-Seong Cheong · 2 years, 3 months ago

Log in to reply

– William Isoroku · 2 years, 3 months ago

Oh, so we have to know the \((x-1)^5\) factorization here right?Log in to reply

\[\begin{equation} \begin{split} (x-1)^5 & = \sum_{r=0}^5 {(-1)^r\begin{pmatrix} 5 \\ r \end{pmatrix}x^{5-r}} \\ & = \begin{pmatrix} 5 \\ 0 \end{pmatrix}x^5 - \begin{pmatrix} 5 \\ 1 \end{pmatrix}x^4 + \begin{pmatrix} 5 \\ 2 \end{pmatrix}x^3 - \begin{pmatrix} 5 \\ 3 \end{pmatrix}x^2 + \begin{pmatrix} 5 \\ 4 \end{pmatrix}x^1 - \begin{pmatrix} 5 \\ 5 \end{pmatrix}x^0 \\ & = x^5 - 5x^4 + 10x^3 - 10x^2 + 5x - 1 \end{split} \end{equation} \] – Chew-Seong Cheong · 2 years, 3 months ago

Log in to reply

– Ayush Verma · 2 years, 3 months ago

How you thought it will be (x-1)^5? Sir.Log in to reply

\[1 \\ 1 \quad 1 \\ 1 \quad 2 \quad 1 \\ 1 \quad 3 \quad 3 \quad 1 \\ 1 \quad 4 \quad 6 \quad 4 \quad 1 \\ 1 \quad 5 \quad 10 \quad 10 \quad 5 \quad 1\\ 1 \quad 6 \quad 15 \quad 20 \quad 15 \quad 6 \quad 1 \] – Chew-Seong Cheong · 2 years, 3 months ago

Log in to reply

– Ayush Verma · 2 years, 3 months ago

ThanksLog in to reply