6000th Brilliant Problem Solved - Proof Problem

To commemorate my 6000th solved problem, which was this, I have decided to post this proof problem.

Let \(P\) be a point inside equilateral triangle \(ABC\). Let \(A'\), \(B'\) and \(C'\) be the projections of \(P\) onto sides \(BC\), \(CA\) and \(AB\) respectively. Prove that the sum of lengths of the inradii of triangles \(PAC'\), \(PBA'\) and \(PCB'\) equals the sum of lengths of the inradii of triangles \(PAB'\), \(PBC'\) and \(PCA'\).

Note by Sharky Kesa
2 years, 9 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Here's a proof, not very elegant though.

Let \(r_{\Delta XYZ}\) denote the inradius of \(\Delta XYZ\).

If \(\Delta XYZ\) is right angled (\(\angle XYZ=90^\circ\)), then \[r_{\Delta XYZ}=\frac{XY+YZ-ZX}{2}\]

The proof of this is given as a note below.

Using this, we have the following equations:

\[\begin{align} r_{\Delta PAC'}&=\frac{PC'+AC'-PA}{2} \\r_{\Delta PAB'}&=\frac{PB'+AB'-PA}{2} \\r_{\Delta PBA'}&=\frac{PA'+BA'-PB}{2} \\r_{\Delta PBC'}&=\frac{PC'+BC'-PB}{2} \\r_{\Delta PCB'}&=\frac{PB'+CB'-PC}{2} \\r_{\Delta PCA'}&=\frac{PA'+CA'-PC}{2}\end{align}\]

The conclusion now follows.


Note:

If \(\Delta\) denotes the area of \(\Delta XYZ\) and \(s\) denotes it's semi-perimeter, then \[r_{\Delta XYZ}=\frac{\Delta}{s}\] Where \(\angle XYZ=90^\circ\).

Now, we know that \(\Delta = \dfrac{1}{2} \cdot XY \cdot ZY\)

So, \[\begin{align} r_{\Delta XYZ}&=\frac{XY \cdot ZY}{XY+YZ+ZX} \\\implies r_{\Delta XYZ}&=\frac{XY \cdot ZY \cdot (XY+YZ-ZX)}{(XY+YZ)^2-ZX^2} \\\implies r_{\Delta XYZ}&=\frac{XY+YZ-ZX}{2} \end{align}\]

The third implication follows by Pythagoras' Theorem.

The proof is now complete.

Also, notice that the fact that \(\Delta ABC\) was equilateral was not required. The result holds for any arbitrary triangle \(\Delta ABC\).

Deeparaj Bhat - 2 years, 9 months ago

Log in to reply

@Sharky Kesa

Do you have an elegant proof?

Deeparaj Bhat - 2 years, 9 months ago

Log in to reply

No, this is my proof.

Sharky Kesa - 2 years, 9 months ago

Log in to reply

@Sharky Kesa Ok. Why the equilateral triangle though?

Deeparaj Bhat - 2 years, 9 months ago

Log in to reply

@Deeparaj Bhat I was hoping someone would have a proof specific for an equilateral triangle. Then, if it was asked for an arbitrary triangle, we could perform an affine transformation so it becomes an equilateral triangle, then use said proof.

Sharky Kesa - 2 years, 9 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...