# A Tricky Trigonometric Equation

For each integer $$n$$, how many solutions are there with $$0 \leq \theta \leq 2 \pi$$ such that

$\cos \theta + 2 \cos 2 \theta + 3 \cos 3 \theta + \ldots + n \cos n \theta = \frac{ n(n+1) } { 2} ?$

(Your answer might depend on $$n$$.)

Note by Calvin Lin
3 years, 11 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

• bulleted
• list

1. numbered
2. list

1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

> This is a quote
This is a quote
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

According To me Answer is : $$\theta =\quad 0\quad ,\quad 2\pi$$.

Explanation

$$\sum _{ 1 }^{ n }{ r } =\frac { n(n+1) }{ 2 } \\ 1+2+3+\quad .\quad .\quad .\quad .\quad .\quad +n\quad =\frac { n(n+1) }{ 2 } \quad$$.

Now using the Fact That :

$$\sum _{ 1 }^{ n }{ r\cos { (r\theta ) } } \quad \le \quad \sum _{ 1 }^{ n }{ r } \quad (\because \quad \cos { (r\theta ) } \quad \le \quad 1\quad )$$.

equality only occurs when

$$\cos { (r\theta ) } \quad =\quad 1\quad \quad \forall \quad r\quad \in \quad [1,n]\\ \Rightarrow \quad r\theta \quad =\quad 0\quad or\quad 2m\pi \quad \quad \forall \quad r\quad \in \quad [1,n]\quad \quad (where\quad m\quad \in \quad I)\\ \therefore \quad in\quad \quad \theta \quad \in \quad [0,2\pi ]\quad$$.

only possible solution are:

$$\theta =\quad 0\quad ,\quad 2\pi$$. which satisfying above equality always

- 3 years, 11 months ago

2

Hint: Use the fact that $$\cos \phi \leq 1$$

- 3 years, 11 months ago

it's awesome!! :D

- 3 years, 11 months ago