A particle at rest starts moving with acceleration \(a_1\). Until it reaches the speed \(v\), it immediately decelerates with \(a_2\) until it stops. The total time consumed is \(t\). Show that the displacement of the particle is \(\frac{1}{2}vt\).

It can also be interpreted as :
Draw the velocity vs time graph of the particle. We need to find the area under the graph which is the area of the triangle which simply is \( \dfrac{1}{2} \times \text{ base } \times \text{ height } = \dfrac{1}{2} \cdot t \cdot v \). This is the required value.

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestIt can also be interpreted as :

Draw the velocity vs time graph of the particle. We need to find the area under the graph which is the area of the triangle which simply is \( \dfrac{1}{2} \times \text{ base } \times \text{ height } = \dfrac{1}{2} \cdot t \cdot v \). This is the required value.

Log in to reply

Can be easily proved using \(v\) \(Vs\) \(t\) graph

Log in to reply

The average velocity with first is (0+v)/2=v/2, in second case it is (v+0)/2=v/2 same as first.

So d = (average velocity)*Time.

Log in to reply