## Definition

Factorization is the decomposition of an expression into a product of its factors.

The following are common factorizations.

1. For any positive integer $$n$$, $a^n-b^n = (a-b)(a^{n-1} + a^{n-2} b + \ldots + ab^{n-2} + b^{n-1} ).$ In particular, for $$n=2$$, we have $$a^2-b^2=(a-b)(a+b)$$.

2. For $n$ an odd positive integer, $a^n+b^n = (a+b)(a^{n-1} - a^{n-2} b + \ldots - ab^{n-2} + b^{n-1} ).$

3. $a^2 \pm 2ab + b^2 = (a\pm b)^2$

4. $x^3 + y^3 + z^3 - 3 xyz = (x+y+z) (x^2+y^2+z^2-xy-yz-zx)$

5. $(ax+by)^2 + (ay-bx)^2 = (a^2+b^2)(x^2+y^2)$. $(ax-by)^2 - (ay-bx)^2 = (a^2-b^2)(x^2-y^2)$.

6. $x^2 y + y^2 z + z^2 x + x^2 z + y^2 x + z^2 y +2xyz= (x+y)(y+z)(z+x)$.

Factorization often transforms an expression into a form that is more easily manipulated algebraically, that has easily recognizable solutions, and that gives rise to clearly defined relationships.

## Worked Examples

### 1. Find all ordered pairs of positive integer solutions $(x,y)$ such that $2^x+ 1 = y^2$.

Solution: We have $2^x = y^2-1 = (y-1)(y+1)$. Since the factors $(y-1)$ and $(y+1)$ on the right hand side are integers whose product is a power of 2, both $(y-1)$ and $(y+1)$ must be powers of 2. Furthermore, their difference is

$(y+1)-(y-1)=2,$

implying the factors must be $y+1 = 4$ and $y-1 = 2$. This gives $y=3$, and thus $x=3$. Therefore, $(3, 3)$ is the only solution.

### 2. Factorize the polynomial

$f(a, b, c) = ab(a^2-b^2) + bc(b^2-c^2) + ca(c^2-a^2).$

Solution: Observe that if $a=b$, then $f(a, a, c) =0$; if $b=c$, then $f(a, b, b)=0$; and if $c=a$, then $f(c,b,c)=0$. By the Remainder-Factor Theorem, $(a-b), (b-c),$ and $(c-a)$ are factors of $f(a,b,c)$. This allows us to factorize

$f(a,b,c) = -(a-b)(b-c)(c-a)(a+b+c).$ Note by Calvin Lin
6 years, 7 months ago

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

• Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
• Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
• Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$ ... $$ or $ ... $ to ensure proper formatting.
2 \times 3 $2 \times 3$
2^{34} $2^{34}$
a_{i-1} $a_{i-1}$
\frac{2}{3} $\frac{2}{3}$
\sqrt{2} $\sqrt{2}$
\sum_{i=1}^3 $\sum_{i=1}^3$
\sin \theta $\sin \theta$
\boxed{123} $\boxed{123}$

Sort by:

For the worked example - 1 : there are 2 solutions : (3,3) and (3,-3)

(y+1)-(y-1) = 2

implies y + 1 = -2 or y + 1 = 4 and y -1 = -4 or y-1 = 2

Thus, the two solutions you have are (3,3) and (3,-3)

- 6 years, 4 months ago

Thanks. I added in "positive integers".

Staff - 5 years, 4 months ago

Thanks for this.

- 6 years, 4 months ago

I did not understand why should (y+1) - (y-1) = 2 ?
Can anyone explain ?

- 5 years, 4 months ago

What do you not understand?

What do you think $(y+1) - (y-1)$ is equal to ?

Staff - 5 years, 4 months ago

I did not see it correctly . My fault ! Sir, I have a problem. I want to learn Number theory as is organized here on Brilliant but I don't follow anything beginning from modular inverses.I have tried the wikis but I still don't follow .Please suggest something.

- 5 years, 4 months ago

How is their (y+1)-(y-1) difference 2?

- 6 years, 4 months ago

$(y+1) - (y-1)$ $= y +1 - y + 1$ $= 1+1= \boxed{2}$

- 6 years, 4 months ago

(Y+1)-(y-1) = y+1-y+1= 2

- 6 years, 4 months ago

2

- 6 years, 4 months ago

How to think that both difference is 2. What is the main moto behind thinking such that????

- 6 years, 4 months ago