Way too easier than last year.

Write the full solution.

1.) Let \(a,b,c,d\) be real numbers such that \(\displaystyle \frac{a}{b} = \frac{b}{c} = \frac{c}{d} = \frac{d}{a}\). Find the maximum value of \(\displaystyle \frac{ab-3bc+ca}{a^{2}-b^{2}+c^{2}}\).

2.) If \((x+y+z)\left(\displaystyle \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right) = 1\), prove that \((x+y)(y+z)(z+x) = 0\).

3.) Find all roots of \(\displaystyle \left\lfloor \frac{x}{2} \right\rfloor - \left\lfloor \frac{x}{3} \right\rfloor = \frac{x}{7}\).

4.) (Someone posted this problem before in Brilliant.) Find all polynomials \(P(x)\) with real coefficients such that \(P(1) = 210\) and

\[(x+10)P(2x) = (8x-32)P(x+6)\].

5.) If \(x,y,z\) are positive real numbers such that \(\displaystyle x+\frac{y}{z} = y+\frac{z}{x} = z+\frac{x}{y} = 2\). Find the value of \(x+y+z\).

Check out all my notes and stuffs for more math problems!

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestIs the first answer -1??

Log in to reply

Nope there's another case of a,b,c,d you didn't consider.

Log in to reply

For1st I got 3

5th - answer 3

Log in to reply

Log in to reply

Log in to reply