Given that \(a,b,c>0 \), prove that

\[ \dfrac{a^2}{b^2 + c^2} + \dfrac {b^2}{a^2+ c^2} + \dfrac{c^2}{a^2 + b^2} \geq \dfrac a{b+c} + \dfrac b{c+a} + \dfrac c{a+b} . \]

Given that \(a,b,c>0 \), prove that

\[ \dfrac{a^2}{b^2 + c^2} + \dfrac {b^2}{a^2+ c^2} + \dfrac{c^2}{a^2 + b^2} \geq \dfrac a{b+c} + \dfrac b{c+a} + \dfrac c{a+b} . \]

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

## Comments

Sort by:

TopNewestNot sure whether correct a^2>=a......1 b^2+c^2>=b+c...2 Then dividing 1 by 2 and proceeding – Aditya Thomas · 5 months, 2 weeks ago

Log in to reply