Waste less time on Facebook — follow Brilliant.
×

An Equality

Given that \(a,b,c>0 \), prove that

\[ \dfrac{a^2}{b^2 + c^2} + \dfrac {b^2}{a^2+ c^2} + \dfrac{c^2}{a^2 + b^2} \geq \dfrac a{b+c} + \dfrac b{c+a} + \dfrac c{a+b} . \]

Note by Khoa Đăng
1 year, 3 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Not sure whether correct a^2>=a......1 b^2+c^2>=b+c...2 Then dividing 1 by 2 and proceeding

Aditya Thomas - 1 year, 2 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...