Given : \( { x }^{ 2 }+{ y }^{ 2 }=1 \)

Now prove that: \( \frac { 1 }{ 1+{ x }^{ 2 } } +\frac { 1 }{ 1+{ y }^{ 2 } } +\frac { 1 }{ 1+xy } \ge \frac { 3 }{ 1+{ \left( \frac { x+y }{ 2 } \right) }^{ 2 } } \)

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestput x and y as asin@ and acos@ and then solve it

Log in to reply

Solve without using any kind of Trigonometrical topics and Jensen's Inequality. Use: AM, GM, HM, CS, Titu's Lemma or any other kind of inequality to solve.

Log in to reply