×

# Anyone help me to solve this please

9 different books are to be arranged on a book-shelf. 4 of these books were written by Shakespeare, 2 by Dickens and 3 by Conrad. How many possible permutations are there if

(c) the books by Conrad are separated from each other?

Note by Daniel Kua
2 years ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

Hi Daniel,

To answer your question, first of all we notice that order matters. The 6 Shakespeare and Dickens books (denoted by "O" below) can be put down in $$6!=720$$ ways. We then have 7 possible places to put the Conrad books down (on either side of the "O's"). Each Conrad book at a different X-spot however because the Conrad books need to be separated from each other.

X O X O X O X O X O X O X

As there are 7 possible places for the 1st Conrad book, 6 possible places for the 2nd Conrad book and 5 possible places for the 3rd Conrad book, the total number of permutations is $$6! \times 7 \times 6 \times 5 = 151200$$.

Kind regards,

Patrick Heebels

- 1 year, 10 months ago

May be....plz let me know the ans

- 2 years ago

210

- 2 years ago

- 1 year, 11 months ago

×