Area of Circle

\[\begin{aligned} x^2+y^2&=r^2\\ y^2&=r^2-x^2\\ y&=\pm\sqrt{r^2-x^2} \end{aligned}\]

A=rrr2x2dx+rrr2x2dx=rrr2x2dx+rrr2x2dx=rrr2x2dx+rrr2x2dx=2rrr2x2dx, let x=rsinθdx=rcosθdθ=2π2π2r2(rsinθ)2rcosθdθ=2π2π2r2r2sin2θrcosθdθ=2π2π2r2(1sin2θ)rcosθdθ=2π2π2r2cos2θrcosθdθ=2π2π2rcosθrcosθdθ=2π2π2r2cos2θdθ=2r2π2π2(12+12cos2θ)dθ=2r2[12θ+14sin2θ]π2π2=2r2(12(π2)+14sin(2(π2))(12(π2)+14sin(2(π2))))=2r2(π4+14sinπ+π4+14sinπ)=2r2(π2)A=πr2\begin{aligned} A&=\int_{-r}^{r}\sqrt{r^2-x^2}dx+\left|\int_{-r}^{r}-\sqrt{r^2-x^2}dx\right|\\ &=\int_{-r}^{r}\sqrt{r^2-x^2}dx+\left|-\int_{-r}^{r}\sqrt{r^2-x^2}dx\right|\\ &=\int_{-r}^{r}\sqrt{r^2-x^2}dx+\int_{-r}^{r}\sqrt{r^2-x^2}dx\\ &=2\int_{-r}^{r}\sqrt{r^2-x^2}dx\text{, let }x=r\sin\theta\Rightarrow dx=r\cos\theta d\theta\\ &=2\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\sqrt{r^2-(r\sin\theta)^2}r\cos\theta d\theta\\ &=2\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\sqrt{r^2-r^2\sin^2\theta}r\cos\theta d\theta\\ &=2\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\sqrt{r^2\left(1-\sin^2\theta\right)}r\cos\theta d\theta\\ &=2\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\sqrt{r^2}\sqrt{\cos^2\theta}r\cos\theta d\theta\\ &=2\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}r\cos\theta r\cos\theta d\theta\\ &=2\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}r^2\cos^2\theta d\theta\\ &=2r^2\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\frac12+\frac12\cos2\theta\right)d\theta\\ &=2r^2\left[\frac12\theta+\frac14\sin2\theta\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\\ &=2r^2\left(\frac12\left(\frac{\pi}{2}\right)+\frac14\sin\left(2\left(\frac{\pi}{2}\right)\right)-\left(\frac12\left(-\frac{\pi}{2}\right)+\frac14\sin\left(2\left(-\frac{\pi}{2}\right)\right)\right)\right)\\ &=2r^2\left(\frac{\pi}{4}+\frac14\sin\pi+\frac{\pi}{4}+\frac14\sin\pi\right)\\ &=2r^2\left(\frac{\pi}{2}\right)\\ A&=\boxed{\pi r^2} \end{aligned}

Note by Gandoff Tan
1 year, 9 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link]( link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}


Sort by:

Top Newest

Any proof for GCSE students, @Gandoff Tan?

Log in to reply


Problem Loading...

Note Loading...

Set Loading...