Waste less time on Facebook — follow Brilliant.
×

Big Numbers

if \[{ x }^{ 2 }+x+1=0\]

what is the value of

\[5{ x }^{ 234 }-{ x }^{ 99 }\]

??

Note by Mobin Moradi
2 years, 8 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Solving the first equation, we get

\[x = \frac{-1 \pm \sqrt{3}i}{2}\]

Let us denote \[\omega = \frac{-1 + \sqrt{3}i}{2}\]

Then it is easy to see that

\[\omega^2 = \left(\frac{-1 + \sqrt{3}i}{2}\right)^2 = \frac{-1 - \sqrt{3}i}{2}\]

Thus, the two roots of the equation are \(\omega,\ \omega^2\)

These are well-known by the name of cube roots of unity because when you solve the equation \(x^3 - 1=0\), you get the roots as \(1,\ \omega,\ \omega^2\). And thus, by Vieta's formula, we have

\[1+\omega+\omega^2=0\]

\[\text{&} \qquad \omega^3 = 1\]

Using the above properties, we can easily find that -

\[5x^{234}-x^{99} = 5\omega^{234} - \omega^{99} = 5(\omega^3)^{78} - (\omega^3)^{33} = 5-1 = \boxed{4}\]-

Also, it doesn't matters whichever value of \(x\) you substitute, you'll always get the same answer as you can see -

\[5x^{234}-x^{99} = 5(\omega^2)^{234} - (\omega^2)^{99} = 5(\omega^3)^{156} - (\omega^3)^{66} = 5-1 = \boxed{4}\]

I hope you got my method.

Thanks.

Kishlaya Jaiswal - 2 years, 8 months ago

Log in to reply

good method kishlaya.thanks.but i know this problem has a very simpler way.unfortunately i couldnt remember it .could anyone solve this problem in another way???

Mobin Moradi - 2 years, 8 months ago

Log in to reply

Roots of the given equation are \(\Large{w~\&~w^2}\). Hence the answer is 4.

Aniket Verma - 2 years, 8 months ago

Log in to reply

could you please explain more about it

Safa M - 2 years, 8 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...