# Can someone tell me how to approach and solve this problem..?

If $(1+ax)^{n}=1+8x+24x^2+...$ and a line through P(a , n) cuts the circle $x^2+y^2=4$ in A and B then PA.PB is equal to $(a)4$ $(b)8$ $(c)16$ $(d)32$

Please explain the solution in DETAIL .....

Note by Parag Zode
3 years, 8 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

$$(1+ax)^{n}=1+n*ax+\dfrac{n(n-1)}{2}*a^{2}*x^{2}+.........=1+8x+24x^{2}+.......Comparing\ \\co-efficients,we\ get a*n=8\ and\ (n-1)*(a)=6.Solving\ these\ two\ we\ get:a=2\ and\ n=4.So\ the\ \\point\ P\ is(2,4).Now,length\ of\ the\ tangent\ on\ the\ given\ circle\ is\\=\sqrt{2^{2}+4^{2}-4}.This\ comes\ to\ 4.Now,PA*PB=PT^{2}=4^{2}.\\Therefore,PA*PB=16.PT:length\ of\ the\ tangent\ to\ the\ circle\ from\ P.$$

- 3 years, 8 months ago

Nice solution! I advise you not to use latex in typing text! It will look more pleasant! See this for more info!

- 3 years, 7 months ago