# Can you help me? It is too hard for me to solve!! It has x=1

$$x^{3} -5x^{2} +14x -4 = 6 \times (x^{2} -x +1 )^{1\3}$$

Note by Cong Thanh
2 years, 1 month ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

Thanks so much!

- 1 year, 10 months ago

I know it's a little late but I'll post my solution, the equation is equivalent to $x^3-5x^2+8x-4+6(x-\sqrt[3]{x^2-x+1})=0$ $\Leftrightarrow (x-1)(x-2)^2+\frac{6(x^3-x^2+x-1)}{x^2+x\sqrt[3]{x^2-x+1}+\sqrt[3]{(x^2-x+1)^2}}=0$ $\Leftrightarrow (x-1)(x-2)^2+\frac{6(x-1)(x^2+1)}{x^2+x\sqrt[3]{x^2-x+1}+\sqrt[3]{(x^2-x+1)^2}}=0$ $\Leftrightarrow (x-1)\bigg[(x-2)^2+\frac{6(x^2+1)}{x^2+x\sqrt[3]{x^2-x+1}+\sqrt[3]{(x^2-x+1)^2}}\bigg]=0$ We see that $$(x-2)^2+\frac{6(x^2+1)}{x^2+x\sqrt[3]{x^2-x+1}+\sqrt[3]{(x^2-x+1)^2}}>0; \forall x\in\mathbb{R}$$ so the only root is $$x=1$$

- 1 year, 10 months ago

May be I can help. But what is the exponent of $$x^{2}-x+1$$ ?

- 2 years, 1 month ago

1/3

- 2 years, 1 month ago