Waste less time on Facebook — follow Brilliant.
×

Chemistry

I am bringing in a little chemistry to brilliant community and I am hoping to hear from at least one of you. This is about Thermodynamics. It is said dS=q/T only for reversible reactions but while deriving the equation for Gibbs free energy we put dS = q/T for change in entropy of surroundings though we use the formula to find the spontaneity of reactions even irreversible. Derivation of G = H - TS

Note by Selena Miller
4 years ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Sounds like Physical Chemistry.

The second law of thermodynamics tells us that the entropy of system is

dS = dq/T

for a reversible process. Note that this definition only applies to a reversible process, but that is consistent because the entropy of the system will always be calculated along a reversible path. In general, if we consider the system and the surroundings the second law states that the entropy of both (i.e. the universe) tends toward a maximum. If a change is reversible the heat exchanged between the system and surroundings dqrev will have a magnitude such that dqrev/T exactly is equal to the entropy change in the system dS. For an irreversible process the heat exchanged between the system and surroundings, dqirr will be less than TdS such that

dS > dqirr/T

The above explanation can be found here.

Also, remember that when calculating spontaneity of a reaction that S, G and H are STATE FUNCTIONS and therefore independent of path--so it doesn't matter whether q or qrev is used--the values of G, S and H will be the same; what will change is q--the value of the heat itself.

N. E. - 4 years ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...