In collaboration with Kalpok Guha, we made a set of problems based around the topic of "types of numbers". There are many types of numbers out there and here are just a few of them.

This set serves primarially to teach everyone about the complexity of numbers and the many interesting properties they have because math is \(\textit{beautiful}\). Except for trig.... Trig is not pretty (lol, I'm bad at trig).

Here is a direct link to the set

here is another one because everyone knows two links are better than 1

Note: most of these problems are doable by hand using a NT approach but a CS approach works just as well.

The "special" numbers include:

Multiplicative perfect numbers- those whose factors when multiplied (including the number itself) yield \(n^2\).

Amicable pair- a number\(n\) whose factors sum to \(k\) and the factors of \(k\) sum to \(n\).

Abundant number- a number whose factors including itself sum to greater than \(2n\).

Deficient number- a number who's factors including itself sum to less than \(2n\)

Perfect number- a number who's factors including itself sum to \(2n\)

Narcissistic number- a number of \(s\) digits that can be represented by the form \(\displaystyle \sum_{i=1}^s 10^{i-1}c_i\) and can be written in the form \(\displaystyle \sum_{i=1}^s c_i^n\) where \(c\) is a whole number and for some positive integral value of \(n\).

Or I'm simplier form, a narcissistic number is one that when each individual digit is summed to the nth power, their sum is the original number.

I must say making this problem set taught me a lot of cool properties about numbers, some that I can't post because I can't think of a problem for them.

I even learned how to spell narcissistic: n-a-r-c-i-s-s-i-s-t-i-c,

## Comments

Sort by:

TopNewest@Trevor Arashiro, what you defined in the section of "Narcissistic number" is actually the definition of Perfect Digital Invariant (PDI) and

notof Narcissistic number. Note that for a PDI to be a narcissistic number, the power \(n\) for the elements of the sum should be equal to the number of digits of the given narcissistic number.Check out the Wikipedia link on Narcissistic number for details. – Prasun Biswas · 2 years, 1 month ago

Log in to reply

But thanks. Learned something once again. – Trevor Arashiro · 2 years, 1 month ago

Log in to reply

And btw, I think you should edit the note to correct that part. – Prasun Biswas · 2 years, 1 month ago

Log in to reply

We have really worked hard on the problems.I have made a set collaboration set So please like and re-share – Kalpok Guha · 2 years, 1 month ago

Log in to reply

@Trevor Arashiro and @Kalpok Guha . \(\ddot\smile\) I was waiting for so long for this set. Had fun solving all of them. – Pranjal Jain · 2 years, 1 month ago

Nice workLog in to reply

– Kalpok Guha · 2 years, 1 month ago

Thank you .Log in to reply