# Coloring a cube

In how many ways a cube can be colored with n different colors such that no 2 neighboring or adjacent faces are colored with same color?

Note by Abdullah Ahmed
1 year, 8 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

I have solved it .

- 1 year, 7 months ago

Great! How would you explain the approach?

Staff - 1 year, 7 months ago

Isn't the formula 1/24(n^6+12n^3+3 n^4+8n^2)? I know it from Burnside's lemma. but in the question two adjacent sides are not colored with same color. so what is the general formula for it? @Calvin Lin

- 1 year, 8 months ago