Main post link -> http://blog.brilliant.org/2013/02/13/complex-numbers/

Read the full explanation on the blog. Feel free to try out these test yourself questions here. If you show your work there is more to discuss.

**Test Yourself**

Determine the 4 roots of the equation \(x^4 + 1 = 0\), and find their real and imaginary parts.

Verify that the norm distributes over multiplication and division. Specifically, show that \(N( z \times w ) = N( z ) \times N( w )\) and that \(N\left( \frac {z}{w} \right) = \frac { N( z )} { N( w )}\). Give examples to show that the norm does NOT distribute over addition and subtraction.

If \(\frac { (1+2i)(2+3i)}{8+i} = a + bi\), what is \(a^2 +b^2 \)? Hint: There is no need to determine the exact values of \( a \) and \( b \).

Determine the square root of \(1-i\).

Note: We can show that the square root of \(z = a + bi\) is equal to \( \pm \left( \sqrt{ \frac {a + \sqrt{a^2+b^2}}{2}} + sgn(b) \sqrt{ \frac {-a + \sqrt{a^2 + b^2}}{2}} \right)\). Currently, our only way to show this is through brute force multiplication. We will be learning how to approach this problem otherwise.

No vote yet

4 votes

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestComplex roots include real roots, right?

Log in to reply

Yes

Log in to reply