Waste less time on Facebook — follow Brilliant.
×

Complex roots part 3 - Product of the roots

\[\prod_{x = 0}^{n - 1}{Z_x} =~ ?\]

The last note proved that the sum of all the roots is equal to zero. This note is going to explore what answer the product of all the roots gives.

Let's start.

\[Z_x = \sqrt[n]{z} = \sqrt[2n]{a^2 + b^2} \cdot \text{cis}\left(\frac{\arctan \frac{b}{a}}{n} + \frac{2x\pi}{n}\right)\]

\[\prod_{x = 0}^{n - 1}{Z_x} = Z_0Z_1Z_2\cdots Z_{n - 1}\]

There are \(n\) terms.

\[\prod_{x = 0}^{n - 1}{Z_x} = \sqrt[2n]{a^2 + b^2}^n \cdot \text{cis}\left(\frac{\arctan\frac{b}{a}}{n}\right)\text{cis}\left(\frac{\arctan\frac{b}{a}}{n} + \frac{2\pi}{n}\right)\text{cis}\left(\frac{\arctan\frac{b}{a}}{n} + \frac{4\pi}{n}\right)\cdots \text{cis}\left(\frac{\arctan\frac{b}{a}}{n} + \frac{2(n - 1)\pi}{n}\right)\]

\[\prod_{x = 0}^{n - 1}{Z_x} = \sqrt{a^2 + b^2} \cdot \text{cis}\left(n\frac{\arctan\frac{b}{a}}{n} + \frac{2\pi + 4\pi + \cdots + 2(n - 1)\pi}{n}\right)\]


\[2\pi + 4\pi + \cdots + 2(n - 1)\pi = 0 + 2\pi + 4\pi + \cdots + 2(n - 1)\pi\]

There is now \(n\) terms rather than \(n - 1\) terms.

\[\sum_{x = 0}^{n - 1}{2x\pi} = \frac{n(2\pi)(n - 1)}{2}\]

\[\sum_{x = 0}^{n - 1}{2x\pi} = n\pi(n - 1)\]

\[\sum_{x = 0}^{n - 1}{2x\pi} = n^2\pi - n\pi\]


\[\prod_{x = 0}^{n - 1}{Z_x} = \sqrt{a^2 + b^2} \cdot \text{cis}\left(\arctan\frac{b}{a} + \frac{n^2\pi - n\pi}{n}\right)\]

\[\prod_{x = 0}^{n - 1}{Z_x} = \sqrt{a^2 + b^2} \cdot \text{cis}\left(\arctan\frac{b}{a} + n\pi - \pi\right)\]

\[\prod_{x = 0}^{n - 1}{Z_x} = \sqrt{a^2 + b^2} \cdot \text{cis}\left(\arctan\frac{b}{a}\right)\text{cis}(n\pi - \pi)\]


\[\sqrt{a^2 + b^2} \cdot \text{cis}\left(\arctan \frac{b}{a}\right) = re^{\theta i} = z\]


\[\prod_{x = 0}^{n - 1}{Z_x} = z\text{cis}(n\pi - \pi)\]

\[\prod_{x = 0}^{n - 1}{Z_x} = z\frac{\text{cis}(n\pi)}{\text{cis}(\pi)}\]


\[\text{cis}(\pi) = \cos(\pi) + i\sin(\pi) = -1 + 0i = -1\]


\[\prod_{x = 0}^{n - 1}{Z_x} = z\frac{\text{cis}(n\pi)}{-1}\]

\[\prod_{x = 0}^{n - 1}{Z_x} = -z\text{cis}(n\pi)\]

\[\prod_{x = 0}^{n - 1}{Z_x} = -z\text{cis}(\pi)^n\]

\[\prod_{x = 0}^{n - 1}{Z_x} = -z(-1)^n\]

\[\prod_{x = 0}^{n - 1}{Z_x} = -(-1)^nz\]

\[\prod_{x = 0}^{n - 1}{Z_x} = (-1)^{n + 1}z\]

In conclusion, if \(n\) is even then the product of the roots is \(-z\), if \(n\) is odd then the product of the roots is \(z\).


\[\text{When }n\text{ is an even number}:~\prod_{x = 0}^{n - 1}{Z_x} = -z\]

\[\text{When }n\text{ is an odd number}:~\prod_{x = 0}^{n - 1}{Z_x} = z\]


Hope you enjoyed the note

Note by Jack Rawlin
1 year, 8 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Awesome article..Worth reading.

Amar Mavi - 1 year, 8 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...