Waste less time on Facebook — follow Brilliant.

Complex roots

Recently I was looking back over some of my previous posts to see if I could improve them. While doing this I noticed something; I haven't done complex roots yet. This surprised me since it's the easiest to calculate by far (at least from what I've found).

So let's get on with it.

Let: \(z\) be a complex number in the form \(\boxed{a + bi}\), \(n\) be an integer where \(\boxed{n \neq 0}\)

\[\large \sqrt[n]{z}\]

\[\large z^{\frac{1}{n}}\]

\[\large \left(re^{\theta i}\right)^{\frac{1}{n}}\]

\[\large r^{\frac{1}{n}}e^{\frac{\theta i}{n}}\]

\[\large \sqrt[n]{r} \text{ cis }\left(\frac{\theta + 2x\pi}{n}\right)\]

Note: \(x\) is an integer between \(0\) and \(n - 1\) inclusive. The reason it's in there is to find all of the roots of \(z\) also known as the roots of unity (no not the game engine). Anyways onwards with the calculation.

\[\large \sqrt[2n]{a^2 + b^2} \text{ cis }\left(\frac{\arctan{\frac{b}{a} + 2x\pi}}{n}\right)\]

Like I said, easiest to calculate by far.

Let \(\large \sqrt[n]{z} = Z_x\)

\[\large Z_x = \sqrt[2n]{a^2 + b^2} \text{ cis }\left(\frac{\arctan{\frac{b}{a} + 2x\pi}}{n}\right)\]

Hope you enjoyed the note.

Note by Jack Rawlin
1 year, 6 months ago

No vote yet
1 vote


Sort by:

Top Newest

Haah! Another nice note! I bookmarked this previously so I can read them on my free time.

You should paste this in one of the De Moivre's Theorem's wiki. Pi Han Goh · 1 year, 6 months ago

Log in to reply


Problem Loading...

Note Loading...

Set Loading...