See the complete wiki page here.

The method of **Componendo et Dividendo** allows a quick way to do some calculations, and can simplify the amount of expansion needed.

If \(a, b, c\) and \(d\) are numbers such that \(b, d\) are non-zero and \( \frac{a}{b} = \frac{c}{d} \), then

\[ \begin{array} {l r l } \text{1. Componendo:} & \frac{ a+b}{b} & = \frac{ c+d}{d}. \\ \text{2. Dividendo: } & \frac{ a-b}{b} & = \frac{ c-d} {d}. \\

\text{ Componendo et Dividendo: } & \\ \text{3. For } k \neq \frac{a}{b},& \frac{ a+kb}{a-kb} & = \frac{ c+kd}{c-kd} .\\ \text{4. For } k \neq \frac{-b}{d}, & \frac{ a}{b} & = \frac{ a + kc } { b + kd }. \\ \end{array} \]

This can be proven directly by observing that

\[ \begin{array} {l r l }
\text{ 1.} \frac{ a+b}{b} = \frac{ \frac{a}{b} + 1} {1} = \frac{ \frac{c}{d} + 1} {1} = \frac{ c+d}{d} . \\
\text{ 2.} \frac{ a-b}{b} = \frac{ \frac{a}{b} - 1} {1} = \frac{ \frac{c}{d} - 1} {1} = \frac{ c-d}{d} . \\
\text{ 3.} \frac{ a+kb}{a-kb} = \frac{ \frac{a}{b} + k } { \frac{a}{b} - k} = \frac{ \frac{c}{d} + k } { \frac{ c}{d} -k} = \frac{ c+kd} { c-kd} . \\
\text{ 4.} \frac{ a + kc} { b+ kd} = \frac{ a}{b} \times \frac{ 1 + k \frac{c}{a} } { 1 + k \frac{d}{b} } = \frac{ a}{b} .

\end{array} \]

## Worked examples

## 1. Show the converse, namely that if \(a, b, c\) and \(d\) are numbers such that \(b, d, a-b, c-d\) are non-zero and \( \frac{ a+b}{a-b} = \frac{c+d} { c-d} \), then \( \frac{ a}{b} = \frac{c}{d} \).

Solution: We apply Componendo et Dividendo with \(k=1 \) (which is valid since \( \frac{a+b}{a-b} \neq 1 \) ), and get that \[ \frac{ 2a } { 2b} = \frac{ (a+b) + (a-b) } { (a+b) - (a-b) } = \frac{ (c+d) + (c-d) } { (c+d) - (c-d) } = \frac{ 2c} { 2d}. \]

Note: The converse of Componendo and Dividendo also holds, and we can prove it by applying Dividendo and Componendo respectively.

## 2. Solve for \(x\): \( \frac{ x^3+1} { x+ 1} = \frac{ x^3-1} { x-1} \).

Solution: For the fractions to make sense, we must have \( x \neq 1, -1\).

Cross multiplying, we get \( \frac{ x^3+1}{x^3-1} = \frac{ x+1}{x-1}. \)

Apply Componendo et Dividendo with \(k=1 \) (which is valid since \( \frac{x+1}{x-1} \neq 1 \) ), we get that \( \frac{ 2x^3}{2} = \frac{ 2x}{2} \Rightarrow x(x^2-1) = 0 \). However since \( x \neq 1, -1 \), we have \(x=0 \) as the only solution.

Note: We also need to check the condition that the denominators are non-zero, but this is obvious.

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

## Comments

Sort by:

TopNewestif a/b =c/d what will be the result by componendo dividendo

Log in to reply

See the statements contained in the first box.

Log in to reply

Sorry I'm slightly confused, could you clarify what Componendo and Dividendo integrate to?

Log in to reply

Check out the examples on the componendo and dividendo wiki page.

Log in to reply