cylinder....... help

A circular cylinder is inscribed in a given cone of radius R cm and height H cm as shown in the figure Find the curved surface area S of the circular cylinder as a function of x Find the relation connecting x and R when S is maximum

Note by Sonali Sukesh
4 years, 5 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

By Similarity of Triangles,
\(\displaystyle \frac{h}{R-x} = \frac{H}{R}\)

\(\displaystyle\Rightarrow h = \frac{H}{R} (R-x)\)

Now, it is clear that,
\(\displaystyle S = 2\pi x\times h\)

Substitute the value of \(\displaystyle h\) and get \(\displaystyle S\) as a function of \(\displaystyle x\).

Differentiate the function that you just derived wrt \(\displaystyle x\), and put it equal to \(\displaystyle 0\).

You will find a relation between \(\displaystyle x\) and \(\displaystyle R\).

Anish Puthuraya - 4 years, 5 months ago

Log in to reply

Right.

Soham Dibyachintan - 4 years, 5 months ago

Log in to reply

2pixh = S, x = R(1-h/H)..............................................................(when S is maximum)

Hrishikesh Dani - 4 years, 5 months ago

Log in to reply

S = 2pix ; x= R[1-h/H]

Gaurav Chaudhary - 4 years, 5 months ago

Log in to reply

right 2pixh = S, x = R(1-h/H)..........(when S is maximum)

Harsh Shah - 4 years, 5 months ago

Log in to reply

thanks 2 all

Sonali Sukesh - 4 years, 5 months ago

Log in to reply

need help fast

Sonali Sukesh - 4 years, 5 months ago

Log in to reply

put H/R =k k=(H-h)/x from this h=H-kx after this S=2pixh put h=H-kx differentiate with respect to x and put dS/dx=0 from this x=R/2

Rohit Dogra - 4 years, 5 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...