# de Moivre's theorem

$\ For\ example\ (cos ( \frac{ \pi }{4}\ ) - \ i\sin ( \frac { \pi }{4}\ ))^6$ $\ Based\ on\ de\ Moivre's\ theorem,\ we\ must\ rewrite\ (cos θ - \ i\ sin θ)^{n}\ as\ (cos (-θ) + \ i\ sin (-θ) )^{n}$ $\ Since\ we\ know\ that\ cos (- \pi ) = \cos \pi \ and\ sin (- \pi ) = - \sin \pi$ $\ Why\ we\ can't\ just\ write\ the\ solution\ as$ $\ (cos\ 6( \frac{ \pi }{4}\ ) - \ i\sin\ 6( \frac{ \pi }{4}\ ))\ instead\ of \ ( cos\ 6( -\frac{ \pi }{4}\ ) + \ i\sin\ 6( -\frac{ \pi }{4}\ ))$ $\ After\ all\ at\ the\ end,\ the\ answer\ still\ the\ same.$

Note by Michael Loh
4 years, 8 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$