×

# This note has been used to help create the Taylor Series wiki

Suppose we want to interpolate an infinite number of points on the Cartesian plane using a continuous and differentiable function $$f$$. How can this be done?

Solution

Given $$n$$ points on the Cartesian plane, the set of points can be interpolated using a polynomial of at least degree $$n-1$$. Given an infinite number of points to interpolate, we need an infinite polynomial:

$f(x) = {a}_{0} + {a}_{1}(x-{x}_{0}) + {a}_{2}{(x-{x}_{0})}^{2} +...$ where $$\left|x-{x}_{0}\right|$$ is within the radius of convergence.

Observation: $f({x}_{0}) = {a}_{0}$ $f'({x}_{0}) = {a}_{1}$ $f''({x}_{0}) = 2{a}_{2}$ $f'''({x}_{0}) = 6{a}_{3}$ ${f}^{(4)}({x}_{0}) = 24{a}_{4}$ ${f}^{(n)}({x}_{0}) = n!{a}_{n}$

Solving for each constant term expands the original function into the infinite polynomial: $f(x) = \sum _{ n=0 }^{ \infty }{ \frac { 1 }{ n! } { f }^{ (n) }({ x }_{ 0 } } ){ (x-{ x }_{ 0 }) }^{ n }.$

Check out my other notes at Proof, Disproof, and Derivation

Note by Steven Zheng
3 years, 5 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

I find this interesting. I use Taylor Series a lot but I had never thought of what actually gives rise to them. Great note!

- 3 years, 5 months ago

There is probably a more rigorous proof out there. This note is more of an intuitive derivation than a proof.

- 3 years, 5 months ago

I still thought it was pretty informative.

- 3 years, 5 months ago

Well, calculus was far from rigorous during Taylor's time.

- 3 years, 5 months ago

It's actually interesting to think about that. It was like at one point in history, someone decided that math in general needed to be more rigorous. Up until that point, everyone was just kinda throwing around ideas without too much proof.

- 3 years, 5 months ago

Throwing around ideas without too much proof is how progress is made. I think, in the early stage of development, mathematical ideas were discovered to work. Well-polished theories come later when exceptions are found. This often happens when there are new ways of looking at things.

- 3 years, 5 months ago