\[\large \left ( \dfrac {2}{3} \right ) ^ n n! \leq \left ( \dfrac {n + 1}{3} \right )^n\]

Prove the above inequation is true for all positive integers \(n\).

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestApply AM -GM on \( 1,2,3...,n \).

AM = \( \dfrac{1 + 2 + 3 + ... + n}{n} = \dfrac{\frac{n(n+1)}{2}}{n} = \dfrac{(n+1)}{2} \)

GM = \( \sqrt[n]{1*2*3*...*n} = \sqrt[n]{n!} \)

Now, AM \( \geq \) GM

\( \implies \dfrac{(n+1)}{2} \geq \sqrt[n]{n!} \)

\( \implies \left (\dfrac{(n+1)}{2} \right )^n \geq n! \)

\( \implies \left ( \dfrac{(n+1)}{3} \right )^n \geq (n!) \left (\dfrac{2}{3} \right )^n \)

Log in to reply

Same method. @Sharky Kesa use of AM>=GM is a very common inequality in questions involving "!"

Log in to reply

How about using another method?

Log in to reply

By Reverse Rearrangement inequality,

\[\Large \left( \dfrac{1}{3} + \dfrac{1}{3} \right) \left( \dfrac{2}{3} + \dfrac{2}{3} \right) \ldots \left( \dfrac{n}{3} + \dfrac{n}{3} \right) \]

\[\Large \leq \left( \dfrac{1}{3} + \dfrac{n}{3} \right) \left( \dfrac{2}{3} + \dfrac{n-1}{3} \right) \ldots \left( \dfrac{n}{3} + \dfrac{1}{3} \right)\]

So, on simplification the above inequality reduces to

\[\Large \left( \dfrac{2}{3} \right) ^{n} n! \leq \left( \dfrac{n+1}{3} \right) ^ {n} \]

which is our desired result.

Log in to reply

Nice :). Sorry nowadays I can't come on hangouts. Tell other guys also.

Log in to reply

Yup! I will say. :D

Log in to reply

Yeah I thought about Daniel's Reverse Rearrangement inequality.

Log in to reply