Waste less time on Facebook — follow Brilliant.
×

Equation without a proof

\[{ (2n\pm 1) }^{ 2 }+{ \left\lfloor \frac { { (2n\pm 1) }^{ 2 } }{ 2 } \right\rfloor }^{ 2 }={ \left\lceil \frac { { (2n\pm 1) }^{ 2 } }{ 2 } \right\rceil }^{ 2 }\]

I somehow found an equation that can generate Pythagorean triplets as shown above for any integral value of \(n\), regardless of positive or negative.

But I can't find a formal proof... So any approach or suggestions?

Note by William Isoroku
1 year, 7 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Let \[\left \lfloor \frac{(2n \pm 1)^2}{2} \right \rfloor = v\] Then, \[\left \lceil \frac{(2n \pm 1)^2}{2} \right \rceil= v+1\\ (2n \pm 1)^2= 2v+1\]

Hence, the conjectured equation is equivalent to \[(2v+1)+(v)^2=(v+1)^2\] Which is obviously true! \[\large Q. E. D. \]

Deeparaj Bhat - 1 year, 7 months ago

Log in to reply

Look at the 2n+1 case. (2n+1)^2=4n^2+4n+1. As in the expression, we are dividing by 2. The 1/2 will be canceled when the floor is taken, so we will have (2n^2+2n)^2 for that part. The LHS will then become (2n+1)^2+(2n^2+2n)^2. Now we have the RHS. Applying a similar method we get 4n^2+4n+1 to round up with the ceiling, so now we have (2n^2+2n+1)^2. Now equate the LHS and RHS, yielding (2n+1)^2+(2n^2+2n)^2=(2n^2+2n+1)^2. Dy difference of square we know this is true because the (2n+1)^2 must equal (2n^2+2n+2n^2+2n+1). Hence proven. The other case simplifies in a nearly identical way. If you need more specifications, just ask. Nice formula.

Sal Gard - 1 year, 7 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...