Hello, fellow Brillianters, how are you all doing?

Recently I came across this question here, and whilst trying to come up with a proof for my solution, I stumbled upon this equation here:

\(2*5^{a} - 1 = b^{2}\), where both a and b are non-negative integers.

I wanted to prove that there are only three pairs of solutions \((a,b)\) for this question; namely, \((0, 1)\), \((1, 3)\) and \((2, 7)\).

My first impulse was to try to prove that if any odd integer \(b\), \(b > 7\), is not a solution, then \(b + 4\) cannot be a solution as well. I thought that it was sufficient until Calvin Lin came along and showed me that I only proved that \(b\) and \(b + 4\) cannot be solutions at the same time. Worst part is that he has no idea either of how to prove this.

So here I am, my friends; do you know a way to prove my statement right (or wrong)? I'd appreciate any form of help you can provide me. Thanks!

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestThis is a Ramanujan-Nagell type equation.

According to Wikipedia, a result of Siegel implies that the number of solutions in each case is finite, but not much further is known.

I believe It is unlikely that there is a simply proof of this statement.

Log in to reply