Waste less time on Facebook — follow Brilliant.
×

Find the value of the following expression

If \(\sin\alpha + \sin\beta + \sin \gamma = 3 \), fidn the value of \(\cos^3 \alpha + \cos^9 \beta + \cos^{27} \gamma \).

Note by Pritthijit Nath
1 year, 6 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

\(\text{We have } \sin{\alpha}+\sin{\beta}+\sin{\gamma}=3 , \text{ since } -1\le \sin{\theta}\le 1\\ \text{We can conclude that } \sin{\alpha}=\sin{\beta}=\sin{\gamma}=1 \implies \cos{\alpha}=\cos{\beta}=\cos{\gamma} = 0 \\ \implies \cos^3{\alpha}+\cos^9{\beta}+\cos^{27}{\gamma} =\boxed{0}\)

Sabhrant Sachan - 1 year, 6 months ago

Log in to reply

0

Hemant Mittal - 1 year, 6 months ago

Log in to reply

Explain your working please.

Pritthijit Nath - 1 year, 6 months ago

Log in to reply

Max . Value of sum of three sines = 3 , since (-1 < sin¤ < +1)

Equality is there in both.,

Therefore we conclude that maximum value (=3) occurs when, all three sines are equal & hence 1.

Therefore cosines will be all 0 , Nd hence the given sum will be equal to zero.

Rishabh Tiwari - 1 year, 6 months ago

Log in to reply

0

Anup Kumar - 1 year, 5 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...