# Finite Field Visualizer

Here is a link to the finite field visualizer. Now, I can't say I am extremely comfortable in using either of the yet but I am looking forward to making use of them.

Please let me know what you think of them, as well as possible investigations to explore with them.

I have a Master's of Education course coming up this January and I am looking forward to showing and sharing the benefits of teaching with finite fields. I think this is actually the only way to quickly get points across to students effectively. Mainly because of the multiple 1s and 0s in these fields.

As well as, as Wildberger states, the beautifully connected number theoretic results that can emerge intuitively.

http://www.4ct.biz/FFG/Views/PtLnFFG.html

http://www.4ct.biz/Wild/FFG.html

All the best,

-Pete

Note by Peter Michael
3 years, 6 months ago

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

• Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
• Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
• Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$ ... $$ or $ ... $ to ensure proper formatting.
2 \times 3 $2 \times 3$
2^{34} $2^{34}$
a_{i-1} $a_{i-1}$
\frac{2}{3} $\frac{2}{3}$
\sqrt{2} $\sqrt{2}$
\sum_{i=1}^3 $\sum_{i=1}^3$
\sin \theta $\sin \theta$
\boxed{123} $\boxed{123}$

Sort by:

Can you explain a bit how to use this tool?

- 3 years, 6 months ago

This is very nice. Did you make this?

- 3 years, 5 months ago

Actually Wildberger posted it. (He mentioned it in one of his presentations).

I really want to be more comfortable with hyperbolic geometry and the field of characteristic two.

I really feel its the key to unlocking the 2x2 rubiks cube and its ability to teach computational geometry.

Would really like some instructions for it...

- 3 years, 5 months ago

I am just exploring it at the moment.

The goal is to be able to use finite fields to explore the properties of universal geometries.

I recommend that you get familiar with Norman Wildberger and is works on Universal Geometry and Rational Trigonometry(There is more but those two will keep you busy to start).

Lots to learn.

- 3 years, 6 months ago