Hello Guys who are giving Jee 2016.

Lets post Some of the things which we used to Forget every time.

Things That I always forget are:

1). Point from which Perpendicular Tangents can be drawn on a curve lies on Director Circle

2). Equation of Hyperbola \( \frac { { \quad \left( \quad Distance\quad of\quad point\quad P(x,y)\quad from\quad conjugate\quad Axis \right) }^{ 2 } }{ { \left( \quad Length\quad of\quad semi\quad Transverse\quad axis \right) }^{ 2 } } -\frac { { \left( \quad Distance\quad of\quad point\quad P(x,y)\quad from\quad transverse\quad Axis \right) }^{ 2 } }{ { \left( \quad Length\quad of\quad semi\quad Conjugate\quad axis \right) }^{ 2 } } =1\)

3). In hyperbola \(|PS-P{ S }^{ ' }|=2b\) Where P is a variable point , \(S,{ S }^{ , }\) are the focus and 2b= Length of transverse axis.

4). Standard deviation\(\left( \sigma \right) \) or Variance\({ \left( \sigma \right) }^{ 2 }\) Do no change on adding or subtracting a number from The observation.

5). Standard Deviation gets multiplied by the number \("h"\) if we multiply the observations by a positive integer \("h"\).

6). \(\displaystyle \int { { e }^{ ax }.\sin { \left( bx \right) dx } } =\frac { { e }^{ ax } }{ { a }^{ 2 }+{ b }^{ 2 } } \left( a\sin { \left( bx \right) } -b\cos { \left( bx \right) } \right) \\ \displaystyle \int { { e }^{ ax }.\cos { (bx) } dx } =\frac { { e }^{ ax } }{ { a }^{ 2 }+{ b }^{ 2 } } \left( b\sin { \left( bx \right) } +a\cos { \left( bx \right) } \right) \)

7). \(\frac { { d }^{ 2 }x }{ d{ y }^{ 2 } } =-\frac { \left( \frac { d{ y }^{ 2 } }{ d{ y }^{ 2 } } \right) }{ { \left( \frac { dy }{ dx } \right) }^{ 3 } } \)

8). \(\overrightarrow { a } X\left( \overrightarrow { b } X\overrightarrow { c } \right) =\left( \overrightarrow { a } .\overrightarrow { c } \right) \overrightarrow { b } -\left( \overrightarrow { a } .\overrightarrow { b } \right) \overrightarrow { c } \)

9). In a triangle ABC \(\frac { a }{ \sin { \left( A \right) } } =\frac { b }{ \sin { \left( B \right) } } =\frac { c }{ \sin { \left( C \right) } } =\frac { abc }{ 2\triangle } =2R\)

10). In a triangle ABC \(\frac { \tan { \left( \frac { B-C }{ 2 } \right) } }{ b-c } =\frac { \tan { \left( \frac { B+C }{ 2 } \right) } }{ b+c } =\frac { \cot { \left( \frac { A }{ 2 } \right) } }{ b+c } \)

Please share if you like it.

Also don't Forget to post your concepts that you used to forget at the Papers.

## Comments

Sort by:

TopNewestI do understand 4 and 5, but you could rephrase it for clarity. Can you explain 7 in detail? – Agnishom Chattopadhyay · 9 months, 4 weeks ago

Log in to reply

A line that starts from one focus of ellipse after getting reflected from the ellipse , passes through the other focii..

For the parabola ,directrix is the director circle.

I have just completed 11th , so, I can help you only with course of 11th, you may ask if you require

BEST OF LUCK! For JEE-ADVANCED

Which books are prefered to you in RESONANCE for all the subjects – Aniket Sanghi · 9 months, 3 weeks ago

Log in to reply

– Rishabh Deep Singh · 9 months, 3 weeks ago

They give us Their Own study materials.Log in to reply

– Aniket Sanghi · 9 months, 3 weeks ago

I study in FIITJEE ..we are also given subject materials...but they also tell to refer some subject reference books...I was talking about these booksLog in to reply

But i dont do S.L. loney it is useless .

I like their study material And advanced level problems. – Rishabh Deep Singh · 9 months, 3 weeks ago

Log in to reply