Waste less time on Facebook — follow Brilliant.
×

Formula for Calculating Squares Starting with n

Hey guys! I was pretty bored today and I happened to have my calculator on me. And for some reason, this problem was on my mind.

So, I started to think about how it gets solved and such and wanted to generalize some formula that could find all the squares starting with \(x\). And I found something! Here is what I ended up with:

\(\left\lceil { 10 }^{ n }\sqrt { x } \right\rceil \)

So, for a given \(x\), it would output a number you'd have to square to get a perfect square starting with \(x\).

For example:

  1. Perfect squares starting with 8888:

\( \left\lceil { 10 }^{ 2 }\sqrt { 8888 } \right\rceil =9428\quad ({ 9428 }^{ 2 }=88887184)\\ \left\lceil { 10 }^{ 3 }\sqrt { 8888 } \right\rceil =94277\quad ({ 94277 }^{ 2 }=8888152729)\\ \left\lceil { 10 }^{ 4 }\sqrt { 8888 } \right\rceil =942762\quad ({ 942762 }^{ 2 }=88880018864)\\ \)

(so on, n would increase by 1 each time...)

  1. Perfect squares starting with 987654321:

\( \left\lceil { 10 }^{ 5 }\sqrt { 987654321 } \right\rceil =3142696806\quad ({ 3142696806 }^{ 2 }=9876543214442601636)\\ \left\lceil { 10 }^{ 6 }\sqrt { 987654321 } \right\rceil =31426968053\quad ({ 31426968053 }^{ 2 }=987654321004282610809) \)

(so on...)

My question is this: See the \(x\) in that formula that I stated at the start of this and never went on to define? That's the thing, I don't know how to define it, as in without guessing and checking, I don't know the smallest n for which the result is valid. I know from playing around that n depends in some way on the amount of digits of x and the parity of the x. If x is even, the smallest n for which the formula is correct will be even (vice versa for odd). Also, the larger x is, the larger n seems to have to be in order for it to hold.

I've tried many things but I can't seem to find out how to determine the smallest value n needed for the formula to carry out properly.

Could anyone provide some insight? It would be much appreciated. :)

This is just for fun!

Note by Andrew Tawfeek
1 year, 6 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Have you read the solution to the problem? it should be pretty clear that I'm not just randomly testing for the value of \(n\).

Calvin Lin Staff - 1 year, 6 months ago

Log in to reply

I understood slightly the differences between when (referring to the solution there) N is odd/even how it would affect the value of \(n\), but I can't seem to understand what decides the lowest value of \(n\).

Andrew Tawfeek - 1 year, 6 months ago

Log in to reply

Moving this into the solution discussion of the problem directly.

Calvin Lin Staff - 1 year, 6 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...