Four Consecutive Integers Plus 1

Let \(a, b, c, d\) be four consecutive integers. Prove that \(abcd + 1\) is a perfect square. Furthermore, prove that the the square root of \(abcd + 1\) is equal to the average of \(ad\) and \(bc\).

Solution

Let \(abcd + 1\) be represented as \((n-1)(n)(n+1)(n+2) +1 = {n}^{4}+2{n}^{3}-{n}^{2}-2n + 1\).

Factoring \(abcd + 1\) yields \({({n}^{2}+n-1)}^{2}\), proving that it is a perfect square.

The average of \(ad\) and \(bc\) is

\[\frac{1}{2}\left[(n-1)(n+2) + n(n+1)\right] = \frac{1}{2}(2{n}^{2} +2n -2 )= {n}^{2}+n-1\]

which is the square-root of \(abcd+1\).

Check out my other notes at Proof, Disproof, and Derivation

Note by Steven Zheng
3 years, 9 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

It seems like a lot of work to expand \((n-1)(n)(n+1)(n+2)+1\) and factor it. Here's a cool trick.

Rearrange it like this,

\(((n-1)(n+2))((n)(n+1))+1\cdots (1)\)

Now let \(n^2+n=x\).

\((1)\) simplifies to \((x-2)(x)+1\) which is equal to \((x-1)^2\).

Mursalin Habib - 3 years, 7 months ago

Log in to reply

Nice! I solved this a long, long, time ago and I copied this from my notebook. Back then, I was just learning algebra, and brute forced these things.

Steven Zheng - 3 years, 7 months ago

Log in to reply

Solution

Let \(abcd + 1\) be represented as \((n-1)(n)(n+1)(n+2) +1 = {n}^{4}+2{n}^{3}-{n}^{2}-2n + 1\).

Factoring \(abcd + 1\) yields \({({n}^{2}+n-1)}^{2}\), proving that it is a perfect square.

The average of \(ad\) and \(bc\) is

\[\frac{1}{2}\left[(n-1)(n+2) + n(n+1)\right] = \frac{1}{2}(2{n}^{2} +2n -2 )= {n}^{2}+n-1\]

which is the square-root of \(abcd+1\).

Steven Zheng - 3 years, 8 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...