Waste less time on Facebook — follow Brilliant.
×

Functional Functions that Function

Find all functions \(f : \mathbb{R} \rightarrow \mathbb{R}\) such that \(f (x + y) + 2f (x - y) + f (x) + 2f (y) = 4x + y\) for all real \(x\) and \(y\).

Note by Yuxuan Seah
3 years, 5 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

SORRY, I MISTYPED IN THE FIRST LINE,f(x)=0 but it is f(x)=x

Subrata Saha - 3 years, 5 months ago

Log in to reply

For all x, f(x)=0 I HAVE A PROOF BUT AM HAVING PROBLEM TO POST IT. Hence, I GIVE THE STRATERGY PLUG y=0, You get f(x)=x-r where 2r=f(0) Then plugging in for functions we get 8r=0 GIVING THE RESULT r=0 AND HENCE, f(x)=x for all x

Subrata Saha - 3 years, 5 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...