Waste less time on Facebook — follow Brilliant.
×

HELP Inequality problem (from Studying Math FB page)

Let \(a, b, c \) be non-negative real numbers. Prove that

\[ \frac{ ab}{a+4b+4c} + \frac{bc}{b+4c+4a} + \frac{ ac}{c+4a+4b} \leq \frac{ a+b+c}{9} \]


Hi! :) I saw this difficult inequality problem on the Studying Math FB Page but haven't been able to solve it for a very long time! (No copyright intended!) Any help would be appreciated. Thanks! :)

Note by Happy Melodies
3 years, 10 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

I have some solutions :)

Dinesh Chavan - 3 years, 6 months ago

Log in to reply

Could you please give it out?I tried homogenizing, linearization.The only other ways are expanding and then using some inequality like Muirhead or Holder.

Bogdan Simeonov - 3 years, 6 months ago

Log in to reply

Maybe since the inequality it homogeneous creating a condition like \(a+b+c\) might help? My other thought is try using Jensen's inequality because it's normally really useful with cyclic inequalities like this, and the \(9\) looks Jensen-esque. You could always just multiply everything up and AM-GM/ Murihead's?

Daniel Remo - 3 years, 8 months ago

Log in to reply

Sure! I will try it out :) Thanks!

Happy Melodies - 3 years, 8 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...