Waste less time on Facebook — follow Brilliant.

Help me on this

Note by Ayushadarsh Tiwari
2 months, 2 weeks ago

No vote yet
1 vote


Sort by:

Top Newest

\(\displaystyle \lim_{x\to\infty} \left(e^{3x}-x\right)^{\dfrac{1}{4x}}\) :

Solution: Whenever you have something raised to the power something and it looks pretty awkward, the first thing to do is to take logarithms. If you denote the limit by \(A\) then we have,

\(\begin{align} \log A &= \log\left(\lim_{x\to\infty} \left(e^{3x}-x\right)^{\dfrac{1}{4x}}\right) \\ &= \lim_{x\to\infty} \log\left(e^{3x}-x\right)^{\dfrac{1}{4x}} \\ &= \lim_{x\to\infty}\dfrac{1}{4x}\log(e^{3x}-x) \\ &= \lim_{x\to\infty} \dfrac{3(e^{3x}-1)}{4(e^{3x}-x)} \quad [\text{Using L-Hopital's Rule}] \\ &= \lim_{x\to\infty} \dfrac{3(1-e^{-3x})}{4(1-xe^{-3x})} \\ &= \dfrac{3}{4}\dfrac{1-\lim_{x\to\infty}e^{-3x}}{1-\lim_{x\to\infty}xe^{-3x}} \\ &=\dfrac{3}{4}\end{align}\)

The last two lines use that fact that \(\displaystyle \lim_{x\to\infty}e^{-3x}=0\) & \(\displaystyle \lim_{x\to\infty}\dfrac{x}{e^{3x}}=\lim_{x\to\infty}\dfrac{3}{e^{3x}}=0\) by L-Hopital's rule

The answer is hence \(\displaystyle \lim_{x\to\infty} \left(e^{3x}-x\right)^{\dfrac{1}{4x}}=e^{3/4}\) Aditya Narayan Sharma · 2 months, 2 weeks ago

Log in to reply


Problem Loading...

Note Loading...

Set Loading...