# Help me on this

1 year, 3 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

$$\displaystyle \lim_{x\to\infty} \left(e^{3x}-x\right)^{\dfrac{1}{4x}}$$ :

Solution: Whenever you have something raised to the power something and it looks pretty awkward, the first thing to do is to take logarithms. If you denote the limit by $$A$$ then we have,

\begin{align} \log A &= \log\left(\lim_{x\to\infty} \left(e^{3x}-x\right)^{\dfrac{1}{4x}}\right) \\ &= \lim_{x\to\infty} \log\left(e^{3x}-x\right)^{\dfrac{1}{4x}} \\ &= \lim_{x\to\infty}\dfrac{1}{4x}\log(e^{3x}-x) \\ &= \lim_{x\to\infty} \dfrac{3(e^{3x}-1)}{4(e^{3x}-x)} \quad [\text{Using L-Hopital's Rule}] \\ &= \lim_{x\to\infty} \dfrac{3(1-e^{-3x})}{4(1-xe^{-3x})} \\ &= \dfrac{3}{4}\dfrac{1-\lim_{x\to\infty}e^{-3x}}{1-\lim_{x\to\infty}xe^{-3x}} \\ &=\dfrac{3}{4}\end{align}

The last two lines use that fact that $$\displaystyle \lim_{x\to\infty}e^{-3x}=0$$ & $$\displaystyle \lim_{x\to\infty}\dfrac{x}{e^{3x}}=\lim_{x\to\infty}\dfrac{3}{e^{3x}}=0$$ by L-Hopital's rule

The answer is hence $$\displaystyle \lim_{x\to\infty} \left(e^{3x}-x\right)^{\dfrac{1}{4x}}=e^{3/4}$$

- 1 year, 3 months ago