# An interesting inequality

$\large \frac{a^2+b^2+c^2}{ab+bc+ca}+\frac{1}{3}\geq\frac{8}{9}\bigg(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\bigg)$ Let $$a,b,c>0$$, prove the above inequality.

###### This problem was taken from a discussion on VMF (Viet Maths Forum)

Note by P C
2 years, 1 month ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

Here's the solution. First, without losing generality, we can assume that $$ab+bc+ac=3$$, the problem'll become $a^2+b^2+c^2+1\geq\frac{8}{3}\bigg(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\bigg)$ Now we'll do some manipulation on the variables in $$LHS$$ $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a(a+b)(a+c)+b(b+a)(b+c)+c(c+a)(c+b)}{(a+b)(b+c)(c+a)}$ $=\frac{a^3+b^3+c^3+(a+b+c)(ab+bc+ca)}{(a+b+c)(ab+bc+ca)-abc}=\frac{(a+b+c)(a^2+b^2+c^2-ab-bc-ca+ab+bc+ca)+3abc}{3(a+b+c)-abc}$ $=\frac{(a+b+c)(a^2+b^2+c^2)+3abc}{3(a+b+c)-abc}$ So now the inequality is $a^2+b^2+c^2+1\geq\frac{8[(a+b+c)(a^2+b^2+c^2)+3abc]}{9(a+b+c)-3abc}$ $\Rightarrow [9(a+b+c)-3abc](a^2+b^2+c^2+1)\geq 8(a+b+c)(a^2+b^2+c^2)+24abc$ $\Leftrightarrow 9(a+b+c)(a^2+b^2+c^2)+9(a+b+c)-3abc(a^2+b^2+c^2)-3abc\geq 8(a+b+c)(a^2+b^2+c^2)+24abc$ $\Leftrightarrow (a+b+c)(a^2+b^2+c^2+9)\geq 3abc(a^2+b^2+c^2+9)$ $\Rightarrow a+b+c\geq 3abc$ The last inequality can be proven easily by these following inequalities: $$(a+b+c)^2\geq 3(ab+bc+ca)$$ and $$abc\leq\sqrt{\big(\frac{ab+bc+ca}{3}\big)^3}$$. The equality holds when $$a=b=c$$

- 2 years, 1 month ago