# How can it not exist?

How do you define "Undefined"?

Does it mean that an expression has many different values?

Is $\sqrt { -1 }$ undefined?

Is ${ 0 }^{ 0 }$ undefined?

But the main question is:-

$Is\quad { 0 }^{ { 0 }^{ ...........\infty \quad times } }\quad undefined?\quad Or\quad it\quad doesn't\quad exist?$

One way to solve it:-

$x={ 0 }^{ { 0 }^{ ...........\infty \quad times } }\\ \therefore x={ 0 }^{ x }\quad \\ If\quad we\quad take\quad x\quad as\quad zero,\quad we\quad get,\\ 0={ 0 }^{ 0 }\quad which\quad is\quad not\quad true.\\ If\quad we\quad take\quad x\quad as\quad n,\quad where\quad n\neq 0,\\ we\quad get\quad n={ 0 }^{ n }.\\ \therefore n=0,\quad which\quad is\quad not\quad true.\\ \\ So\quad this\quad proves\quad that\quad { 0 }^{ { 0 }^{ ...........\infty \quad times } }\quad is\quad not\\ undefined,\quad but\quad it\quad doesn't\quad exist.\\ \\ \\ \\$

How is it possible that a given value doesn't exist?

There are 4 types of answers to all mathematical questions:-

1) Finite

2) Infinite

3) Undefined

4) Imaginary

So how is it possible that it doesn't exist? Can you give any more examples of expressions whose value doesn't exist?

Can you say that this is undefined?

Plot twist: Another way to solve:-

$x={ 0 }^{ { 0 }^{ ...........\infty \quad times } }\\ \therefore { 0 }^{ x }={ 0 }^{ { 0 }^{ ...........\infty \quad times } }\\ \therefore { 0 }^{ x }={ 0 }^{ x }\\ All\quad values\quad of\quad x\quad except\quad 0\quad satisfy\\ this.\quad So\quad x\quad is\quad undefined.\\ \\ \\ \\ \\ \\$

Now we have 2 values of x-> Undefined and doesn't exist.

Is there anyone who can clear my confusion?

I request you all to give your views and solutions in the comment box. I will be highly obliged.

Note by Archit Boobna
4 years, 9 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $ ... $ or $ ... $ to ensure proper formatting.
2 \times 3 $2 \times 3$
2^{34} $2^{34}$
a_{i-1} $a_{i-1}$
\frac{2}{3} $\frac{2}{3}$
\sqrt{2} $\sqrt{2}$
\sum_{i=1}^3 $\sum_{i=1}^3$
\sin \theta $\sin \theta$
\boxed{123} $\boxed{123}$

Sort by:

hmmmmmmmm

- 4 years, 9 months ago

{ y }^{ x{ y }^{ y } }

- 4 years, 9 months ago

kuch bhi

- 4 years, 9 months ago

It is Undefined..check it out below

There are 7 indeterminant forms namely,

$\frac{0}{0}, \frac{\infty}{\infty}, \infty - \infty, \infty \times 0, \infty^{0}, 0^{0}, 1^{\infty}$

here $0$, $1$ and $\infty$ are tending $0$ and tending $\infty$

But

$\frac{exact 0}{exact 0}, \frac{tending0}{exact 0}, \infty + \infty, \infty \times \infty, \infty^{\infty}, \pm \infty$

Are undefined

Let me explain further

$exact 1^{\infty} = 1$

But

$tending 1 ^{\infty}$ is indeterminant

Another example

$\frac{exact 0}{tending 0} = 0$

But

$\frac{tending 0}{tending 0}$ is indeterminant

- 4 years, 9 months ago

Thank you so much for the explanation

- 4 years, 9 months ago

You missed indeterminant form...

- 4 years, 9 months ago

Thanks. But please tell me more about indeterminant form.

- 4 years, 9 months ago

Is there any difference between indeterminant and undefined?

- 4 years, 9 months ago