×

# How to

How to do the following:

$$if\quad x\quad =\quad cy\quad +\quad bz\\ \quad \quad \quad y\quad =\quad az\quad +\quad cx\\ \quad \quad \quad z\quad =\quad bx\quad +\quad ay\\ \\ then\quad show\quad that\quad :\quad \frac { { x }^{ 2 } }{ 1-{ a }^{ 2 } } =\frac { { y }^{ 2 } }{ 1-{ b }^{ 2 } } =\frac { { z }^{ 2 } }{ 1-{ c }^{ 2 } }$$

Note by Syed Baqir
2 years, 6 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

From equation for y and z we have

$$x=\dfrac{y-az}{c}=\dfrac{z-ay}{b}$$

$$cy+bz=\dfrac{y-az}{c}$$ then $$(a+bc)z=(1-c^{2})y --(1)$$

$$cy+bz=\dfrac{z-ay}{b}$$ then $$(a+bc)y=(1-b^{2})z --(2)$$

$$(1)\div (2)=\dfrac{z}{y}=\dfrac{(1-c^{2})y}{(1-b^{2})z}$$

Thus $$\dfrac{y^{2}}{1-b^{2}}=\dfrac{z^{2}}{1-c^{2}}$$ then do the same for x and a you will get what are you seeking for.

- 2 years, 6 months ago

nice solution

- 2 years, 6 months ago

Kindly show us your attempt at the answer and where you're getting stuck.

- 2 years, 6 months ago