New user? Sign up

Existing user? Log in

\[ \large \int \sqrt{\frac{\sec^{3}(x)}{1+\sin(x)}} \, dx =\ ?\]

Note by Majed Musleh 3 years, 3 months ago

Easy Math Editor

*italics*

_italics_

**bold**

__bold__

- bulleted- list

1. numbered2. list

paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)

> This is a quote

This is a quote

# I indented these lines # 4 spaces, and now they show # up as a code block. print "hello world"

2 \times 3

2^{34}

a_{i-1}

\frac{2}{3}

\sqrt{2}

\sum_{i=1}^3

\sin \theta

\boxed{123}

Sort by:

It's equals to \( \displaystyle \int \sqrt{\frac1{\cos^3(x) (1+\sin(x))}} \, dx \). Let \(y = \frac \pi2 - x \), then it becomes

\[ -\int \frac1{\sqrt{\sin^3(y)(1+\cos(y))}} \, dy \]

Apply Tangent half-angle substitution, then it equals to

\[ - \int \sqrt{\frac{1}{\left(\frac{2t}{1+t^2}\right)^3\left(1+ \frac{1-t^2}{1+t^2}\right)} }\cdot \frac{2 dt}{t^2+1} = -\frac12 \int \frac{1+t^2}{t^{3/2}} \, dt \]

Which can be easily integrated from here, back substitute everything and you're done.

Log in to reply

@Brian Charlesworth @Pi Han Goh

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestIt's equals to \( \displaystyle \int \sqrt{\frac1{\cos^3(x) (1+\sin(x))}} \, dx \). Let \(y = \frac \pi2 - x \), then it becomes

\[ -\int \frac1{\sqrt{\sin^3(y)(1+\cos(y))}} \, dy \]

Apply Tangent half-angle substitution, then it equals to

\[ - \int \sqrt{\frac{1}{\left(\frac{2t}{1+t^2}\right)^3\left(1+ \frac{1-t^2}{1+t^2}\right)} }\cdot \frac{2 dt}{t^2+1} = -\frac12 \int \frac{1+t^2}{t^{3/2}} \, dt \]

Which can be easily integrated from here, back substitute everything and you're done.

Log in to reply

@Brian Charlesworth @Pi Han Goh

Log in to reply