Waste less time on Facebook — follow Brilliant.
×

Huge easy difficulty.

Find minimum number \(n\), such that

\(2^{n!}\)×\(2^{n-1!}\)×\(2^{n-2!}\)×... ...×\(2^{3!}\)×\(2^{2!}\)×\(2^{1!}\)

is a perfect power of \(67108864\).

Note by Bryan Lee Shi Yang
2 years, 9 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

We start by observing that \(67108864 = 2^{26}\)

So, it suffices to find the least \(n\) such that \(\sum_{r=1}^n r! = 26k\) for some arbitrary positive integer \(k\).

But observe that \[\sum_{r=1}^n r! = 1+ \sum_{r=2}^n r! = 1+2N\]

Hence, we see that the LHS is odd whereas RHS is even. And therefore, no solution exists for \(n\).

Kishlaya Jaiswal - 2 years, 9 months ago

Log in to reply

Guts to powers

Akram Hossain - 2 years, 7 months ago

Log in to reply

Sorry, note edited.

Bryan Lee Shi Yang - 2 years, 9 months ago

Log in to reply

Assuming you mean to write parentheses around your exponents, there is no solution. Your question is equivalent to asking if there are any integers which satisfy 2^x = 9615^y, which is false since gcd(2, 9615) = 1.

D G - 2 years, 9 months ago

Log in to reply

I don't understand your notation. Could you be more explicit with your product formula?

D G - 2 years, 9 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...