# IMO 2016 Day 1

I'm surprised nobody else has posted this. Yes, there are plenty of discussions in Art of Problem Solving, but why not here? And of course there are more problems.

## Problem 1

Triangle $$BCF$$ has a right angle at $$B$$. Let $$A$$ be the point on line $$CF$$ such that $$FA = FB$$ and $$F$$ lies between $$A$$ and $$C$$. Point $$D$$ is chosen so that $$DA = DC$$ and $$AC$$ is the bisector of $$\angle{DAB}$$. Point $$E$$ is chosen so that $$EA = ED$$ and $$AD$$ is the bisector of $$\angle{EAC}$$. Let $$M$$ be the midpoint of $$CF$$. Let $$X$$ be the point such that $$AMXE$$ is a parallelogram. Prove that $$BD$$, $$FX$$, and $$ME$$ are concurrent.

## Problem 2

Find all positive integers $$n$$ for which each cell of an $$n \times n$$ table can be filled with one of the letters I, M, and O in such a way that:

• in each row and each column, one third of the entries are I, one third are M, and one third are O; and
• in any diagonal, if the number of entries on the diagonal is a multiple of three, then one third of the entries are I, one third are M, and one third are O.

Note. The rows and columns of an $$n \times n$$ table are each labelled $$1$$ to $$n$$ in a natural order. Thus each cell corresponds to a pair of positive integer $$(i, j)$$ with $$1 \le i,j \le n$$. For $$n > 1$$, the table has $$4n-2$$ diagonals of two types. A diagonal of first type consists all cells $$(i, j)$$ for which $$i+j$$ is a constant, and the diagonal of this second type consists all cells $$(i, j)$$ for which $$i-j$$ is constant.

## Problem 3

Let $$P = A_1 A_2 \cdots A_k$$ be a convex polygon in the plane. The vertices $$A_1, A_2, \ldots, A_k$$ have integral coordinates and lie on a circle. Let $$S$$ be the area of $$P$$. An odd positive integer $$n$$ is given such that the squares of the side lengths of $$P$$ are integers divisible by $$n$$. Prove that $$2S$$ is an integer divisible by $$n$$.

Note by Ivan Koswara
2 years, 1 month ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

Here's my synthetic solution. Let $$XF$$ intersect $$BD$$ at $$O$$ and $$EM$$ at $$O^{'}$$. We need to show that $$O$$ coincides with $$O^{'}$$. A clear observation shows that $$B,C,F,D,X$$ are concyclic because $$\angle\{DCF\}$$=$$\angle\{DBF\}$$. Moreover $$D$$ is the circumcenter of triangle $$CBA$$. A clear angle chase shows that $$\angle \{DXF\}$$=$$\angle\{DBF\}$$ showing $$O$$ as the circumcenter of triangle $$OBE$$ thus $$E{O^{'}}$$=$$BO$$ Thus $$O$$ coincides with $$O{'}$$.proved Your extension can be proved easily if you watch $$F$$ as the incenter of triangle $$DAB$$ and watching $$XFAD$$ and $$CDEM$$ as the parallelogram. Thanks proving $$O$$ as the circumcenter was really very helpful.

- 5 months, 3 weeks ago

Oh about it, u were talking to me.. OK I am also trying to solve it with another way...

- 5 months, 3 weeks ago

I have an extension to Q1. (Almost got a complete solution for it, but i observed this, which follows):

Let this intersection point be labelled $$O$$. Prove $$O$$ is the circumcentre of $$\Delta XBE$$.

- 2 years, 1 month ago

Nice observation. If you complex trig bash it, the solution to your extension becomes very apparent. I'm currently typing up my solution to the original problem and can include your extension at the end.

- 2 years, 1 month ago

Nice, I have my own solution for it as well. Th essence for this extension is to just prove $$OE=OX$$ since $$OX=OB$$ is quite apparent.

- 2 years, 1 month ago

Provide a solution using complex numbers.

- 5 months, 3 weeks ago

Well ur solution was really nice, I am also seeing it and trying to find a mistake..... 😂 😂😂😂😂😂😂😂😇😇😇😇😇😝😝😝😝😝😋

- 5 months, 3 weeks ago