Given a triangle \(ABC\) let \(I\) be the centre of its inscribed circle. The internal bisectors of the angles \(A\), \(B\) and \(C\) meet the opposite sides at \(A'\), \(B'\) and \(C'\) respectively. Prove that

\[\dfrac {1}{4} < \dfrac {AI \cdot BI \cdot CI}{AA' \cdot BB' \cdot CC'} \leq \dfrac {8}{27}\]

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestLet \((a,b,c)=(BC,CA,AB)\). Some not-so-tedious geometry leads to

\[\dfrac{AI\cdot BI\cdot CI}{AA'\cdot BB'\cdot CC'}=\dfrac{(a+b)(b+c)(c+a)}{(a+b+c)^3}.\] So we need to prove

\[\dfrac{(a+b)(b+c)(c+a)}{(a+b+c)^3} > \dfrac 1 4, ~~~ \dfrac{(a+b)(b+c)(c+a)}{(a+b+c)^3}\le \dfrac 8 {27}.\] For the first one, clearing denominators, expanding and cancelling gives

\[(a^2b+b^2 c+c^2a+ab^2+bc^2+ca^2)-(a^3+b^3+c^3)-2abc> -4abc\]

which factors into \[(a+b-c)(b+c-a)(c+a-b)>-4abc.\] This is true because by the triangle inequalities, \((a+b-c)(b+c-a)(c+a-b)>0\).

For the second part, directly apply AM-GM inequality

\[\dfrac{(a+b)(b+c)(c+a)}{(a+b+c)^3}\le \left(\dfrac{2(a+b+c)/3}{a+b+c}\right)^3=\left(\dfrac{2}{3}\right)^3=\dfrac{8}{27}.\]

Log in to reply

A slightly easier way of doing the LHS is to use the (Ravi) substitution of \(AB = x+y, BC = y+z, CA = z + x \), and then we want to show that

\[ ( 1 + \frac{x}{ x+y+z} ) ( 1 + \frac{y}{x+y+z} ) ( 1 + \frac{z}{ x+y+z} ) > 2 \]

This follows immediately by expanding out the LHS and looking at 4 terms.

Log in to reply

When did you turn 13?

Log in to reply

I haven't.

Log in to reply