Given the sequence \(\frac{1}{3}+\frac{1}{9}+\frac{2}{27}+\frac{3}{81}+.....\frac{F_k}{3^k}+......\) where \(F_k\) is the Fibonacci sequence. Compute the sum.

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

## Comments

Sort by:

TopNewestHere, Let

Sbe its sum.So, \( {S} - \frac{S}{3} = \frac{1}{3} - \frac{1}{3^2} {(S)} \)

Or \( S= \frac{3}{5} \) – Sachin Vishwakarma · 1 year, 5 months ago

Log in to reply

Use this \[\sum_{k=1}^{\infty} F_k x^k = \frac{x}{1-x-x^2} \quad \forall |x| < \frac{\sqrt5-1}{2}\]

@William Isoroku – Deeparaj Bhat · 11 months, 2 weeks ago

Log in to reply