New user? Sign up

Existing user? Sign in

Given the sequence \(\frac{1}{3}+\frac{1}{9}+\frac{2}{27}+\frac{3}{81}+.....\frac{F_k}{3^k}+......\) where \(F_k\) is the Fibonacci sequence. Compute the sum.

Note by William Isoroku 1 year, 12 months ago

Easy Math Editor

*italics*

_italics_

**bold**

__bold__

- bulleted- list

1. numbered2. list

paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)

> This is a quote

This is a quote

# I indented these lines # 4 spaces, and now they show # up as a code block. print "hello world"

2 \times 3

2^{34}

a_{i-1}

\frac{2}{3}

\sqrt{2}

\sum_{i=1}^3

\sin \theta

\boxed{123}

Sort by:

Here, Let S be its sum.

So, \( {S} - \frac{S}{3} = \frac{1}{3} - \frac{1}{3^2} {(S)} \)

Or \( S= \frac{3}{5} \)

Log in to reply

Use this \[\sum_{k=1}^{\infty} F_k x^k = \frac{x}{1-x-x^2} \quad \forall |x| < \frac{\sqrt5-1}{2}\]

@William Isoroku

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestHere, Let

Sbe its sum.So, \( {S} - \frac{S}{3} = \frac{1}{3} - \frac{1}{3^2} {(S)} \)

Or \( S= \frac{3}{5} \)

Log in to reply

Use this \[\sum_{k=1}^{\infty} F_k x^k = \frac{x}{1-x-x^2} \quad \forall |x| < \frac{\sqrt5-1}{2}\]

@William Isoroku

Log in to reply