Waste less time on Facebook — follow Brilliant.
×

Integration Limit problem!

Prove

\[\displaystyle \int_0^{2\pi}{\sqrt{a^2\cos^2(t) + b^2 \sin^2(t)}\ dt} \geq \sqrt{4\pi (\pi a b + {(a-b)}^2)}\]

As Paul J. Nahin describes this inequality considering perimeter of an ellipse using isoperimetric inequality and a nice trick, he also says that he has not been able to find a proof using integration manipulations.

I also tried it myself but I could not think of any method. Try it and post your solutions. I would be glad to see them. You can also send it to the author as he mentions in his book.

Note by Kartik Sharma
5 months, 1 week ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...