Waste less time on Facebook — follow Brilliant.

JOMO 6, Long 3

A teacher writes down three numbers, 1, 2 and 3, on the whiteboard. Now, every student take turns to the whiteboard and erase one number, and then replace it by the sum of the two numbers left. After some turns, is it possible to have the numbers: \(6^{2012}, 7^{2013}, 8^{2014}\) on the whiteboard at the same time? Give proof.

Note by Yan Yau Cheng
3 years ago

No vote yet
1 vote


Sort by:

Top Newest

Notice that a curious characteristic (even/uneven) of the initial sum of numbers never changes. We have that \(1+2+3\) is even, but \(6^{2012} + 7^{2013} + 8^{2014}\) is uneven. By the Invariance Principle, it is not possible to have these numbers on the whiteboard. \(\boxed{\mathbb{QED}.}\) Guilherme Dela Corte · 3 years ago

Log in to reply

After every turn, the sum of the numbers on the whiteboard will be even (from a,b,c on the whiteboard we will gen 2*(a+b) or the analogs) Since 6^2012+7^2013+8^2014 is odd the answer is NO Tudor Darius Cardas · 1 year, 5 months ago

Log in to reply


Problem Loading...

Note Loading...

Set Loading...