×

# Just Observed A Cool Result!

I just found a generalised formula to find the range of the functions of the form: $f(x)=a\cos x + b\sin x + c$

The range of the above function would be: $$\left[-\sqrt{a^2+b^2}+c, \sqrt{a^2+b^2}+c\right]$$.

Here's what I did;

1. Multiply and divide the function by $$\sqrt{a^2 + b^2}$$;

$f(x)=\sqrt{a^2 + b^2}\left(\dfrac{a\cos x}{\sqrt{a^2 + b^2}} + \dfrac{b\sin x}{\sqrt{a^2 + b^2}}\right)+c$

2. Now, say that there exists a right triangle whose sides are $$a, b, \sqrt{a^2 + b^2}$$, such that;

$\sin\beta = \dfrac{a}{\sqrt{a^2 + b^2}};\quad \cos\beta = \dfrac{b}{\sqrt{a^2 + b^2}}$

3. Substitute the above values in the function to get:

\begin{align} f(x)&=\sqrt{a^2 + b^2}\left(\sin\beta\cos x+ \cos\beta\sin x\right) + c\\ &=\sqrt{a^2 + b^2}\sin(\beta +x)+c\\ \end{align}

4. Now let us say that the angle $$\beta + x=\alpha$$, thus the maximum value of $$\sin\alpha = 1$$ and the minimum value of $$\sin\alpha = -1$$, hence;

\begin{align} f(x)_{\text{max}}&=\sqrt{a^2 + b^2}+c\\ f(x)_{\text{min}}&=-\sqrt{a^2 + b^2}+c\\ \end{align}

Note by Sravanth Chebrolu
1 year, 3 months ago

Sort by:

That is a general method in practice. Anyway finding it on your own is great! ! · 1 year, 3 months ago

Oh I thought so, thanks! · 1 year, 3 months ago

I try...we have $f(x)=a\cos x + b\sin x + c$ If we derive we obtain $f'(x)=-a\sin x + b\cos x$ To find max/min $-a\sin x + b\cos x=0$ We find $\cos x=\frac{a}{b}\sin x$ $\tan x=\frac{b}{a}$ So now we can replace them in f(x) $y_{max}=(\frac{a^2+b^2}{b})\sin(\tan^{-1}(\frac{b}{a})) + c$

but if we consider a rectangle triangle with sides a, b and c, where alpha is the angle between b and c (and the angle between a and b is 90°) then

$\sin(\tan^{-1}(\frac{b}{a}))=\frac{b}{c}=\frac{b}{\sqrt{a^2+b^2}}$

So now

$y_{max}=\sqrt{a^2+b^2} + c$

We can try to see that it is really the maximum of f(x), so the minimum symmetrically must be

$y_{min}=-\sqrt{a^2+b^2} + c$

Right...? · 1 year, 3 months ago

@Matteo Monzali: Since you have posted this, I have given another version of what I did. Please check that out. · 1 year, 3 months ago

Yes, but I think your method is easier than mine! :) · 1 year, 3 months ago

Exactly! I almost did the same! Splendid!

I have reduced some steps, thanks for posting it! · 1 year, 3 months ago