Let me know!

The planet Neptune travels around the Sun with a period of 165 years. Show that the radius of its orbit is approximately thirty times that of Earth's orbit, both being considered as circular.

Note by Rishabh Kumar
3 years, 5 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Using Kepler third law:

\( \frac{a(neptune)^{3}}{T(neptune)²} = \frac{a(earth)^{3}}{T(earth)²} \)

Where \( a \) and \( T \) are respectively radius (generally, half of ellipse greatest axis) and period of trajectory.

Thus:

\( \frac{a(neptune)}{a(earth)} = \frac{T(neptune)}{T(earth)}^\frac{2}{3} = 165^\frac{2}{3} \)

\( \frac{a(neptune)}{a(earth)} = 30.082 \)

Mat Baluch - 3 years, 5 months ago

Log in to reply

oh in order for the neptune to remain in the orbit its centripetal force should be balanced by the centrifugal force, mv^2 /r = gMm/r^2 v=sq rt gMm/r time period = 2pi R/ velocity from the above time period = 2 pi R/sq rt gmM/r T = 2pi sq rt R^3 /GM R= 165 ^2/3 that of the radius of that earth R= 30 THAT OF EARTH

Yaswanth Thod - 3 years, 5 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...