\[ \large a = 1 + \dfrac1{2^2} + \dfrac1{3^2} + \cdots + \dfrac1{2016^2} \]

Find the value of \(\lfloor a \rfloor \).

**Notation**: \( \lfloor \cdot \rfloor \) denotes the floor function.

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestThe answer is 1.

Note that if \[s_n=\sum_{r=1}^n \frac{1}{r^2} \quad \forall n \in \mathbb{N}-\{1\} \\ s_1=1\] then \(\{s_n\}_{n=1}^{\infty}\) is a strictly increasing sequence that which is always less than 2, that is, \[n<m \implies s_n<s_m \quad n, m \in \mathbb{N} \\ s_n<2 \quad \forall n \in \mathbb{N}\]

Here are the proofs:

The first statement is true as \(s_m\) contains more number of positive terms than \(s_n\).

To prove the next assertion, note that \[\begin{align}0&<r(r-1)<r^2 \quad \forall r \in \mathbb{N}-\{1\} \\\implies \frac{1}{r^2} &< \frac{1}{r(r-1)} \quad \forall r \in \mathbb{N}-\{1\} \\\implies s_n&<1+\sum_{r=2}^n \frac{1}{r(r-1)}\\&=1+\sum_{r=2}^n \frac{1}{r-1}-\frac{1}{r}\\&=2-\frac{1}{n}\\\implies s_n&<2 \quad \forall n \in \mathbb{N} \end{align}\]

Now, \[1=s_1<s_{2016}<2\\\implies \large \boxed{\lfloor s_{2016} \rfloor=1}\]

Note:\[s_{2016}<\lim_{n \to \infty} s_n = \frac{\pi^2}{6} < 1.645\]

Refer here for the proof of this.

Log in to reply

Nice solution..+1.I guessed it anyway

Log in to reply

Try to answer other problems of the set.You are tooooo good in solving problems.

Log in to reply

Will try after jee advanced :)

Log in to reply

Log in to reply

Log in to reply

Log in to reply

I think the answer is 2.

Log in to reply

This is again for NMTC lvl 2 2016

Log in to reply

no it is of 2015

Log in to reply

Oh sorry I meant the previous year IE 2015....I know because I appeared...

Log in to reply

Log in to reply

Log in to reply

Log in to reply

Log in to reply

Log in to reply