Waste less time on Facebook — follow Brilliant.
×

Lorentz Transformation Matrices

Express the vector \[\left( \begin{matrix} \begin{matrix} x' \\ y' \end{matrix} \\ \begin{matrix} z' \\ t' \end{matrix} \end{matrix} \right) =\left( \begin{matrix} \begin{matrix} \gamma (x-vt) \\ y \end{matrix} \\ \begin{matrix} z \\ \gamma (t-vx/{ c }^{ 2 }) \end{matrix} \end{matrix} \right)\]

as a \(4\times4\) matrix for scalars \(\gamma, v, c\). Show that the determinant of this matrix is 1. Find the inverse matrix. Verify that the inverse matrix is precisely the Inverse Lorentz Transformation (with no boost in the y and z axes).

Solution

The Lorentz Transformation: \[ \begin{align*} x' &= \gamma (x-vt) \\ y' &= y \\ z' &= z \\ t' &= \gamma (t - vx / {c}^{2}) \\ \end{align*}\]

or

\[ \begin{pmatrix} x' \\ y' \\ z' \\ t' \\ \end{pmatrix} = \begin{pmatrix} \gamma & 0 & 0 & -\gamma v \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\gamma {v}/{c}^{2} & 0 & 0 & \gamma \\ \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \\ \end{pmatrix} \]

Since the determinant is 1, we can just find the adjoint matrix. The adjoint matrix can be found by transposing the cofactor matrix. Hence,

\[ \begin{pmatrix} x \\ y \\ z \\ t \\ \end{pmatrix} = \begin{pmatrix} \gamma & 0 & 0 & \gamma v \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \gamma {v}/{c}^{2} & 0 & 0 & \gamma \\ \end{pmatrix} \begin{pmatrix} x' \\ y' \\ z' \\ t' \\ \end{pmatrix} \]

We retrieve the Inverse Lorentz Transformation: \[ \begin{align*} x &= \gamma (x'+vt') \\ y &= y' \\ z &= z' \\ t &= \gamma (t' + vx' / {c}^{2}) \\ \end{align*}\]

Check out my other notes at Proof, Disproof, and Derivation

Note by Steven Zheng
2 years, 5 months ago

No vote yet
1 vote

Comments

There are no comments in this discussion.

×

Problem Loading...

Note Loading...

Set Loading...