# Lorentz Transformation Matrices

Express the vector $\left( \begin{matrix} \begin{matrix} x' \\ y' \end{matrix} \\ \begin{matrix} z' \\ t' \end{matrix} \end{matrix} \right) =\left( \begin{matrix} \begin{matrix} \gamma (x-vt) \\ y \end{matrix} \\ \begin{matrix} z \\ \gamma (t-vx/{ c }^{ 2 }) \end{matrix} \end{matrix} \right)$

as a $4\times4$ matrix for scalars $\gamma, v, c$. Show that the determinant of this matrix is 1. Find the inverse matrix. Verify that the inverse matrix is precisely the Inverse Lorentz Transformation (with no boost in the y and z axes).

Solution

The Lorentz Transformation: \begin{aligned} x' &= \gamma (x-vt) \\ y' &= y \\ z' &= z \\ t' &= \gamma (t - vx / {c}^{2}) \\ \end{aligned}

or

$\begin{pmatrix} x' \\ y' \\ z' \\ t' \\ \end{pmatrix} = \begin{pmatrix} \gamma & 0 & 0 & -\gamma v \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\gamma {v}/{c}^{2} & 0 & 0 & \gamma \\ \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \\ \end{pmatrix}$

Since the determinant is 1, we can just find the adjugate matrix. The adjugate matrix can be found by transposing the cofactor matrix. Hence,

$\begin{pmatrix} x \\ y \\ z \\ t \\ \end{pmatrix} = \begin{pmatrix} \gamma & 0 & 0 & \gamma v \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \gamma {v}/{c}^{2} & 0 & 0 & \gamma \\ \end{pmatrix} \begin{pmatrix} x' \\ y' \\ z' \\ t' \\ \end{pmatrix}$

We retrieve the Inverse Lorentz Transformation: \begin{aligned} x &= \gamma (x'+vt') \\ y &= y' \\ z &= z' \\ t &= \gamma (t' + vx' / {c}^{2}) \\ \end{aligned}

Check out my other notes at Proof, Disproof, and Derivation Note by Steven Zheng
6 years, 2 months ago

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

• Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
• Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
• Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$ ... $$ or $ ... $ to ensure proper formatting.
2 \times 3 $2 \times 3$
2^{34} $2^{34}$
a_{i-1} $a_{i-1}$
\frac{2}{3} $\frac{2}{3}$
\sqrt{2} $\sqrt{2}$
\sum_{i=1}^3 $\sum_{i=1}^3$
\sin \theta $\sin \theta$
\boxed{123} $\boxed{123}$