×

# Lovely Primes!!!!!!!!!!!!!

I have recently got some interest in Primes and tried to explore more and more in it. Late, at night 11:00, I found this beautiful theorem.

I found that" Every prime when divided by four gives a remainder 1 or -1.

Therefore, square of every prime leaves a remainder 1 when divided by 4.

(sum_{i=1}^n) P gives a remainder n when divided by 4.( where P is a prime)

The primes we take doesn't include 2.

Note by Sudhir Aripirala
3 years, 1 month ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

• bulleted
• list

1. numbered
2. list

1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

> This is a quote
This is a quote
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

Sorry to burst your bubble, but I could say that about the square of every odd number :P

- 3 years, 1 month ago

Nothing to feel bad.Had to realize that before. However, thanks Brother @Jake Lai . By the way, I don't feel bad about it because I have tried and failed. Failures are stepping stones to success

- 3 years, 1 month ago

Indeed! That's the attitude I admire the most!

- 3 years, 1 month ago